1,022 research outputs found

    Kinetic instabilities that limit {\beta} in the edge of a tokamak plasma: a picture of an H-mode pedestal

    Full text link
    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak (MAST) have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM steep gradients in pressure, P, and density, ne, form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes (KBMs) in the pedestal and microtearing modes (MTMs) in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.Comment: Final version as it appeared in PRL (March 2012). Minor improvements include: shortened abstract, and better colour table for figures. 4 pages, 6 figure

    Comparison of BES measurements of ion-scale turbulence with direct, gyrokinetic simulations of MAST L-mode plasmas

    Full text link
    Observations of ion-scale (k_y*rho_i <= 1) density turbulence of relative amplitude dn_e/n_e <= 0.2% are available on the Mega Amp Spherical Tokamak (MAST) using a 2D (8 radial x 4 poloidal channel) imaging Beam Emission Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this turbulence, i.e., amplitudes, correlation times, radial and perpendicular correlation lengths and apparent phase velocities of the density contours, are determined by means of correlation analysis. For a low-density, L-mode discharge with strong equilibrium flow shear exhibiting an internal transport barrier (ITB) in the ion channel, the observed turbulence characteristics are compared with synthetic density turbulence data generated from global, non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code NEMORB. This validation exercise highlights the need to include increasingly sophisticated physics, e.g., kinetic treatment of trapped electrons, equilibrium flow shear and collisions, to reproduce most of the characteristics of the observed turbulence. Even so, significant discrepancies remain: an underprediction by the simulations of the turbulence amplituide and heat flux at plasma periphery and the finding that the correlation times of the numerically simulated turbulence are typically two orders of magnitude longer than those measured in MAST. Comparison of these correlation times with various linear timescales suggests that, while the measured turbulence is strong and may be `critically balanced', the simulated turbulence is weak.Comment: 27 pages, 11 figure

    Self-consistent pedestal prediction for JET-ILW in preparation of the DT campaign

    No full text
    The self-consistent core-pedestal prediction model of a combination of EPED1 type pedestal prediction and a simple stiff core transport model is able to predict Type I ELMy (edge localized mode) pedestals of a large JET-ILW (ITER-like wall) database at the similar accuracy as is obtained when the experimental global plasma beta is used as input. The neutral penetration model [R. J. Groebner et al., Phys. Plasmas 9, 2134 (2002)] with corrections that take into account variations due to gas fueling and plasma triangularity is able to predict the pedestal density with an average error of 15%. The prediction of the pedestal pressure in hydrogen plasma that has higher core heat diffusivity compared to a deuterium plasma with similar heating and fueling agrees with the experiment when the isotope effect on the stability, the increased diffusivity, and outward radial shift of the pedestal are included in the prediction. However, the neutral penetration model that successfully predicts the deuterium pedestal densities fails to predict the isotope effect on the pedestal density in hydrogen plasmas

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (δ) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift.EURATOM 633053Swedish Energy Agency 40146-
    corecore