9,838 research outputs found

    Robust control for nonlinear discrete-time systems with quantitative input to state stability requir

    Full text link
    In this paper, we consider state feedback robust control problems for discrete-time nonlinear systems subject to disturbances. The objective of the control is to minimize a performance function while guaranteeing a prescribed quantitative input to state stability (ISS) property for the closed-loop systems. By introducing the concept of ISS control invariant set, a sufficient condition for the problem to be feasible is given. Built on the sufficient condition, a computationally efficient control design algorithm based on one-step min-max optimization is developed. An example is given to illustrate the proposed strategy. Copyright © 2007 International Federation of Automatic Control All Rights Reserved

    Variation of microphysics in wind bubbles: an alternative mechanism for explaining the rebrightenings in Gamma-ray burst afterglows

    Get PDF
    Conventionally, long Gamma-ray bursts (GRBs) are thought to be caused by the core collapses of massive stars. During the lifetime of a massive star, a stellar wind bubble environment should be produced. Furthermore, the microphysics shock parameters may vary along with the evolution of the fireball. Here, we investigate the variation of the microphysics shock parameters under the condition of wind bubble environment, and allow the microphysics shock parameters to be discontinuous at shocks in the ambient medium. It is found that our model can acceptably reproduce the rebrightenings observed in GRB afterglows, at least in some cases. The effects of various model parameters on rebrightenings are investigated. The rebrightenings observed in both the R-band and X-ray afterglow light curves of GRB 060206, GRB 070311 and GRB 071010A are reproduced in this model. © 2009 The Authors. Journal compilation © 2009 RAS.postprin

    Continuous Description of Human 3D Motion Intent through Switching Mechanism

    Full text link
    © 2001-2011 IEEE. Post-stroke motor recovery highly relies on voluntarily participating in active rehabilitation as early as possible for promoting the reorganization of the patient's brain. In this paper, a new method is proposed which manipulates cable-based rehabilitation robots to assist multi-joint body motions. This uses an electromyography (EMG) decoder for continuous estimation of voluntary motion intention to establish a cooperative human-machine interface for promoting the participation in rehabilitation exercises. In particular, for multi-joint complex tasks in three-dimensional space, a switching mechanism has been developed which can carve up tasks into separate simple motions. For each simple motion, a linear six-inputs and three-outputs time-invariant model is established respectively. The inputs are the processed muscle activations of six arm muscles, and the outputs are voluntary forces of participants when executing a multi-directional tracking task with visual feedback. The experiments for examining the decoder model and EMG-based controller include model training, testing and controller application phases with seven healthy participants. Experimental results demonstrate that the decoder model with the switching mechanism could effectively recognize arm movement intention and provide appropriate assistance to the participants. This study finds that the switching mechanism can improve both the model estimation accuracy and the completeness for executing complex tasks

    Human motion intent description based on bumpless switching mechanism for rehabilitation robot.

    Full text link
    This paper aims to improve the performance of an electromyography (EMG) decoder based on a switching mechanism in controlling a rehabilitation robot for assisting human-robot cooperation arm movements. For a complex arm movement, the major difficulty of the EMG decoder modeling is to decode EMG signals with high accuracy in real-time. Our recent study presented a switching mechanism for carving up a complex task into simple subtasks and trained different submodels with low nonlinearity. However, it was observed that a "bump" behavior of decoder output (i.e., the discontinuity) occurred during the switching between two submodels. The bumps might cause unexpected impacts on the affected limb and thus potentially injure patients. To improve this undesired transient behavior on decoder outputs, we attempt to maintain the continuity of the outputs during the switching between multiple submodels. A bumpless switching mechanism is proposed by parameterizing submodels with all shared states and applied in the construction of the EMG decoder. Numerical simulation and real-time experiments demonstrated that the bumpless decoder shows high estimation accuracy in both offline and online EMG decoding. Furthermore, the outputs achieved by the proposed bumpless decoder in both testing and verification phases are significantly smoother than the ones obtained by a multimodel decoder without a bumpless switching mechanism. Therefore, the bumpless switching approach can be used to provide a smooth and accurate motion intent prediction from multi-channel EMG signals. Indeed, the method can actually prevent participants from being exposed to the risk of unpredictable loads

    Black Hole Emission in String Theory and the String Phase of Black Holes

    Get PDF
    String theory properly describes black-hole evaporation. The quantum string emission by Black Holes is computed. The black-hole temperature is the Hawking temperature in the semiclassical quantum field theory (QFT) regime and becomes the intrinsic string temperature, T_s, in the quantum (last stage) string regime. The QFT-Hawking temperature T_H is upper bounded by the string temperature T_S. The black hole emission spectrum is an incomplete gamma function of (T_H - T_S). For T_H << T_S, it yields the QFT-Hawking emission. For T_H \to T_S, it shows highly massive string states dominate the emission and undergo a typical string phase transition to a microscopic `minimal' black hole of mass M_{\min} or radius r_{\min} (inversely proportional to T_S) and string temperature T_S. The string back reaction effect (selfconsistent black hole solution of the semiclassical Einstein equations) is computed. Both, the QFT and string black hole regimes are well defined and bounded.The string `minimal' black hole has a life time tau_{min} simeq (k_B c)/(G hbar [T_S]^3). The semiclassical QFT black hole (of mass M and temperature T_H) and the string black hole (of mass M_{min} and temperature T_S) are mapped one into another by a `Dual' transform which links classical/QFT and quantum string regimes.Comment: LaTex, 22 pages, Lectures delivered at the Chalonge School, Nato ASI: Phase Transitions in the Early Universe: Theory and Observations. To appear in the Proceedings, Editors H. J. de Vega, I. Khalatnikov, N. Sanchez. (Kluwer Pub

    Nonparametric Hammerstein model based model predictive control for heart rate regulation.

    Full text link
    This paper proposed a novel nonparametric model based model predictive control approach for the regulation of heart rate during treadmill exercise. As the model structure of human cardiovascular system is often hard to determine, nonparametric modelling is a more realistic manner to describe complex behaviours of cardiovascular system. This paper presents a new nonparametric Hammerstein model identification approach for heart rate response modelling. Based on the pseudo-random binary sequence experiment data, we decouple the identification of linear dynamic part and input nonlinearity of the Hammerstein system. Correlation analysis is applied to acquire step response of linear dynamic component. Support Vector Regression is adopted to obtain a nonparametric description of the inverse of input static nonlinearity that is utilized to form an approximate linear model of the Hammerstein system. Based on the established model, a model predictive controller under predefined speed and acceleration constraints is designed to achieve safer treadmill exercise. Simulation results show that the proposed control algorithm can achieve optimal heart rate tracking performance under predefined constraints

    Optimizing heart rate regulation for safe exercise

    Full text link
    Safe exercise protocols are critical for effective rehabilitation programs. This paper aims to develop a novel control strategy for an automated treadmill system to reduce the danger of injury during cardiac rehabilitation. We have developed a control-oriented nonparametric Hammerstein model for the control of heart rate during exercises by using support vector regression and correlation analysis. Based on this nonparametric model, a model predictive controller has been built. In order to guarantee the safety of treadmill exercise during rehabilitation, this new automated treadmill system is capable of optimizing system performance over predefined ranges of speed and acceleration. The effectiveness of the proposed approach was demonstrated with six subjects by having their heart rate track successfully a predetermined heart rate. © 2009 Biomedical Engineering Society

    Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels

    Get PDF
    This work explains the occurrence of transformation-induced plasticity via stress-assisted martensite, when designing ultrafine-grained duplex steels. It is found that, when the austenite is reduced to a fine scale of about 300 nm, the initial deformation-induced microstructure can be dominated by parallel lamellae of epsilon martensite or mechanical twinning, which cannot efficiently provide nucleation sites for strain-induced martensite. Hence, alpha martensite nucleation occurs independently by a stress-assisted process that enhances transformation-induced plasticity in ultrafine-grained austenite. This metallurgical principle was validated experimentally by using a combination of transmission Kikuchi diffraction mapping, transmission electron microscopy, and atom probe microscopy, and demonstrated theoretically by the thermodynamics model of stress-assisted martensite.The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility (ammrf.org.au) node at Sydney Microscopy & Microanalysis, at the University of Sydney.This is the accepted manuscript. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1359645414006958
    corecore