27 research outputs found

    Medical imaging: Removing the blindfold

    No full text

    Distinct mechanisms regulate Lck spatial organization in activated T cells

    No full text
    Phosphorylation of the T cell receptor (TCR) by the kinase Lck is the first detectable signaling event upon antigen engagement. The distribution of Lck within the plasma membrane, its conformational state, kinase activity, and protein–protein interactions all contribute to determine how efficiently Lck phosphorylates the engaged TCR. Here, we used cross-correlation raster image correlation spectroscopy and photoactivated localization microscopy to identify two mechanisms of Lck clustering: an intrinsic mechanism of Lck clustering induced by locking Lck in its open conformation and an extrinsic mechanism of clustering controlled by the phosphorylation of tyrosine 192, which regulates the affinity of Lck SH2 domain. Both mechanisms of clustering were differently affected by the absence of the kinase Zap70 or the adaptor Lat. We further observed that the adaptor TSAd bound to and promoted the diffusion of Lck when it is phosphorylated on tyrosine 192. Our data suggest that while Lck open conformation drives aggregation and clustering, the spatial organization of Lck is further controlled by signaling events downstream of TCR phosphorylation

    Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination

    No full text
    Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR–CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR–CD3 complexes. We found that only TCR–CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR–pMHC affinity determined the density of TCR–CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR–CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination

    Capturing resting T cells: the perils of PLL.

    No full text
    To the editor — Full understanding of lymphocyte activation will require thorough characterization of the ‘resting’ state and how it changes. Surfaces coated with the cationic homopolymer poly-L-lysine (PLL) are widely used for total internal reflection fluorescence (TIRF) imaging of the organization of surface proteins on resting lymphocytes^1,2,3,4,5 because PLL is assumed to be inert. Here we found that PLL initiated T cell signaling and profoundly altered the activity of membrane proteins such as the T cell antigen receptor (TCR). Therefore, the emerging idea that receptors and signaling proteins cluster by default^1,2,3,4,5, which has been based mostly on studies of lymphocytes interacting with PLL-coated surfaces, needs reconsideration.Supported by a Royal Society University Research Fellowship (UF120277 to S.F.L.) and Research Professorship (RP150066 to D.K.); the EPSRC (EP/L027631/1 to A.P.,); the Wellcome Trust (098274/Z/12/Z to S.J.D., and WT101609MA to R.A.F.); PA Cephalosporin Fund (C.E.); the Wolfson Imaging Centre Oxford (funded by the Wolfson Foundation and Wellcome Trust; 104924/14/Z/14); the Micron Advanced BioImaging Unit (Wellcome Trust Strategic Award 091911); the Medical Research Council (MC_UU_12010/Unit Programmes G0902418 and MC_UU_12025); an MRC/BBSRC/EPSRC award (MR/K01577X/1); and a Marie SkƂodowska-Curie Intra-European grant (707348 to I.U.)
    corecore