145 research outputs found

    A Novel BiLevel Paradigm for Image-to-Image Translation

    Full text link
    Image-to-image (I2I) translation is a pixel-level mapping that requires a large number of paired training data and often suffers from the problems of high diversity and strong category bias in image scenes. In order to tackle these problems, we propose a novel BiLevel (BiL) learning paradigm that alternates the learning of two models, respectively at an instance-specific (IS) and a general-purpose (GP) level. In each scene, the IS model learns to maintain the specific scene attributes. It is initialized by the GP model that learns from all the scenes to obtain the generalizable translation knowledge. This GP initialization gives the IS model an efficient starting point, thus enabling its fast adaptation to the new scene with scarce training data. We conduct extensive I2I translation experiments on human face and street view datasets. Quantitative results validate that our approach can significantly boost the performance of classical I2I translation models, such as PG2 and Pix2Pix. Our visualization results show both higher image quality and more appropriate instance-specific details, e.g., the translated image of a person looks more like that person in terms of identity

    Non-Visible Light Data Synthesis and Application: A Case Study for Synthetic Aperture Radar Imagery

    Full text link
    We explore the "hidden" ability of large-scale pre-trained image generation models, such as Stable Diffusion and Imagen, in non-visible light domains, taking Synthetic Aperture Radar (SAR) data for a case study. Due to the inherent challenges in capturing satellite data, acquiring ample SAR training samples is infeasible. For instance, for a particular category of ship in the open sea, we can collect only few-shot SAR images which are too limited to derive effective ship recognition models. If large-scale models pre-trained with regular images can be adapted to generating novel SAR images, the problem is solved. In preliminary study, we found that fine-tuning these models with few-shot SAR images is not working, as the models can not capture the two primary differences between SAR and regular images: structure and modality. To address this, we propose a 2-stage low-rank adaptation method, and we call it 2LoRA. In the first stage, the model is adapted using aerial-view regular image data (whose structure matches SAR), followed by the second stage where the base model from the first stage is further adapted using SAR modality data. Particularly in the second stage, we introduce a novel prototype LoRA (pLoRA), as an improved version of 2LoRA, to resolve the class imbalance problem in SAR datasets. For evaluation, we employ the resulting generation model to synthesize additional SAR data. This augmentation, when integrated into the training process of SAR classification as well as segmentation models, yields notably improved performance for minor classe

    Make the U in UDA Matter: Invariant Consistency Learning for Unsupervised Domain Adaptation

    Full text link
    Domain Adaptation (DA) is always challenged by the spurious correlation between domain-invariant features (e.g., class identity) and domain-specific features (e.g., environment) that does not generalize to the target domain. Unfortunately, even enriched with additional unsupervised target domains, existing Unsupervised DA (UDA) methods still suffer from it. This is because the source domain supervision only considers the target domain samples as auxiliary data (e.g., by pseudo-labeling), yet the inherent distribution in the target domain -- where the valuable de-correlation clues hide -- is disregarded. We propose to make the U in UDA matter by giving equal status to the two domains. Specifically, we learn an invariant classifier whose prediction is simultaneously consistent with the labels in the source domain and clusters in the target domain, hence the spurious correlation inconsistent in the target domain is removed. We dub our approach "Invariant CONsistency learning" (ICON). Extensive experiments show that ICON achieves the state-of-the-art performance on the classic UDA benchmarks: Office-Home and VisDA-2017, and outperforms all the conventional methods on the challenging WILDS 2.0 benchmark. Codes are in https://github.com/yue-zhongqi/ICON.Comment: Accepted by NeurIPS 202

    Learning a Disentangled Embedding for Monocular 3D Shape Retrieval and Pose Estimation

    Full text link
    We propose a novel approach to jointly perform 3D shape retrieval and pose estimation from monocular images.In order to make the method robust to real-world image variations, e.g. complex textures and backgrounds, we learn an embedding space from 3D data that only includes the relevant information, namely the shape and pose. Our approach explicitly disentangles a shape vector and a pose vector, which alleviates both pose bias for 3D shape retrieval and categorical bias for pose estimation. We then train a CNN to map the images to this embedding space, and then retrieve the closest 3D shape from the database and estimate the 6D pose of the object. Our method achieves 10.3 median error for pose estimation and 0.592 top-1-accuracy for category agnostic 3D object retrieval on the Pascal3D+ dataset, outperforming the previous state-of-the-art methods on both tasks

    Class-Incremental Exemplar Compression for Class-Incremental Learning

    Full text link
    Exemplar-based class-incremental learning (CIL) finetunes the model with all samples of new classes but few-shot exemplars of old classes in each incremental phase, where the "few-shot" abides by the limited memory budget. In this paper, we break this "few-shot" limit based on a simple yet surprisingly effective idea: compressing exemplars by downsampling non-discriminative pixels and saving "many-shot" compressed exemplars in the memory. Without needing any manual annotation, we achieve this compression by generating 0-1 masks on discriminative pixels from class activation maps (CAM). We propose an adaptive mask generation model called class-incremental masking (CIM) to explicitly resolve two difficulties of using CAM: 1) transforming the heatmaps of CAM to 0-1 masks with an arbitrary threshold leads to a trade-off between the coverage on discriminative pixels and the quantity of exemplars, as the total memory is fixed; and 2) optimal thresholds vary for different object classes, which is particularly obvious in the dynamic environment of CIL. We optimize the CIM model alternatively with the conventional CIL model through a bilevel optimization problem. We conduct extensive experiments on high-resolution CIL benchmarks including Food-101, ImageNet-100, and ImageNet-1000, and show that using the compressed exemplars by CIM can achieve a new state-of-the-art CIL accuracy, e.g., 4.8 percentage points higher than FOSTER on 10-Phase ImageNet-1000. Our code is available at https://github.com/xfflzl/CIM-CIL.Comment: Accepted to CVPR 202

    Attention-based Class Activation Diffusion for Weakly-Supervised Semantic Segmentation

    Full text link
    Extracting class activation maps (CAM) is a key step for weakly-supervised semantic segmentation (WSSS). The CAM of convolution neural networks fails to capture long-range feature dependency on the image and result in the coverage on only foreground object parts, i.e., a lot of false negatives. An intuitive solution is ``coupling'' the CAM with the long-range attention matrix of visual transformers (ViT) We find that the direct ``coupling'', e.g., pixel-wise multiplication of attention and activation, achieves a more global coverage (on the foreground), but unfortunately goes with a great increase of false positives, i.e., background pixels are mistakenly included. This paper aims to tackle this issue. It proposes a new method to couple CAM and Attention matrix in a probabilistic Diffusion way, and dub it AD-CAM. Intuitively, it integrates ViT attention and CAM activation in a conservative and convincing way. Conservative is achieved by refining the attention between a pair of pixels based on their respective attentions to common neighbors, where the intuition is two pixels having very different neighborhoods are rarely dependent, i.e., their attention should be reduced. Convincing is achieved by diffusing a pixel's activation to its neighbors (on the CAM) in proportion to the corresponding attentions (on the AM). In experiments, our results on two challenging WSSS benchmarks PASCAL VOC and MS~COCO show that AD-CAM as pseudo labels can yield stronger WSSS models than the state-of-the-art variants of CAM
    • …
    corecore