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Abstract

We present a novel unsupervised feature representation

learning method, Visual Commonsense Region-based Con-

volutional Neural Network (VC R-CNN
1), to serve as an

improved visual region encoder for high-level tasks such as

captioning and VQA. Given a set of detected object regions

in an image (e.g., using Faster R-CNN), like any other un-

supervised feature learning methods (e.g., word2vec), the

proxy training objective of VC R-CNN is to predict the con-

textual objects of a region. However, they are fundamentally

different: the prediction of VC R-CNN is by using causal

intervention: P (Y |do(X)), while others are by using the

conventional likelihood: P (Y |X). We extensively apply

VC R-CNN features in prevailing models of two popular

tasks: Image Captioning and VQA, and observe consistent

performance boosts across all the methods, achieving many

new state-of-the-arts2.

1. Introduction

Today’s computer vision systems are good at telling

us “what” (e.g., classification [5], segmentation [4]) and

“where” (e.g., detection [9]), yet bad at knowing “why”,

by asking for high-level commonsense. That is still elusive,

even for our human philosophers [3], not to mention for ma-

chines.

It is not hard to spot the “cognitive errors” committed by

machines due to the lack of common sense. As shown in

Figure 1, by using only the visual features, e.g., the prevail-

ing Faster R-CNN [9] based Up-Down [1], machine usually

fails to describe the exact visual relationships (the caption-

ing example), or, even if the prediction is correct, the under-

lying visual attention is not reasonable (the VQA example).

Previous works blame this for dataset bias without further

justification [6], e.g., the large concept co-occurrence gap

in Figure 1; but here we take a closer look at it by appre-

ciating the difference between the “visual” and “common-

sense” features. As the “visual” only tells “what”/“where”

1Please refer to the full version of this paper in [11] for better clarity.
2https://github.com/Wangt-CN/VC-R-CNN
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Figure 1. Examples of “cognitive errors” in image captioning

and VQA due to the dataset bias. The ratio ./. denotes the co-

occurrence% in captions and VQA questions. By comparing with

the Faster R-CNN [9] based features [1], our VC R-CNN features

can correct the errors, e.g., more accurate visual relationships and

visual attentions, by being more commonsense awareness.

about person or leg per se, it is just a more descriptive

symbol than its correspondent English word; when there is

bias, e.g., there are more person than leg regions co-

occur with the word “ski”, the visual attention is thus more

likely to focus on the person region.

We are certainly not the first to believe that visual fea-

tures should include more commonsense knowledge. There

is a trend in our community towards weakly-supervised

learning features from large-scale vision-language cor-

pus [8]. However, despite the challenge in trading off be-

tween annotation cost and noisy multimodal pairs, common

sense is not always recorded in text due to the reporting

bias [10], e.g., most may say “people walking on road” but

few will point out “people walking with legs”. In fact, we

humans naturally learn common sense in an unsupervised

fashion by exploring the physical world, and we wish that

machines can also imitate in this way.

A successful example is the unsupervised learning of

word vectors in our sister NLP community: a word rep-

resentation X is learned by predicting its contextual word

Y , i.e., P (Y |X) in a neighborhood window. However, its

counterpart in our own community, such as learning by pre-

dicting surrounding objects or parts [2], is far from effec-
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Figure 2. The overview of VC R-CNN. Any R-CNN backbone

(e.g., Faster R-CNN [9]) can be used to extract regions of interest

(RoI) on the feature map. Each RoI is then fed into two sibling

branches: a Self Predictor to predict its own class, e.g., xc, and a

Context Predictor to predict its context labels, e.g., yc, with our

Do calculus. The architecture is trained with a multi task loss.

tive in down-stream tasks. The reason is that the common-

sense knowledge, in the form of language sentences, has

already been recorded in discourse; in contrast, once an

image has been taken, the explicit knowledge why objects

are contextualized will never be observed, so the true com-

mon sense that causes the existence of objects X and Y
might be confounded by the spurious observational bias,

e.g., if keyboard and mouse are more often observed

with table than any other objects, the underlying common

sense that keyboard and mouse are parts of computer

will be wrongly attributed to table.

In this paper, we proposed an unsupervised region fea-

ture learning method: Visual Commonsense R-CNN (VC

R-CNN), as illustrated in Figure 2, which uses Region-

based Convolutional Neural Network (R-CNN) [9] as the

visual backbone, and the causal intervention as the train-

ing objective. Besides its novel learning fashion, we also

design a novel algorithm as an effective approximation for

the imaginative intervention (cf. Section 2.2). The delivery

of VC R-CNN is a region feature extractor for any region

proposal, and thus it is fundamental and ready-to-use for

many high-level vision tasks such as Image Captioning and

VQA. Through extensive experiments in Section 3, VC R-

CNN shows significant and consistent improvements over

strong baselines — the prevailing methods in each task.

2. Sense-making by Intervention

2.1. Causal Intervention

Do-expression Figure 3. The causal

intervention P (Y |do(X)).
Nodes denote variables and

arrows denote the direct

causal effects.

As shown in Figure 3 (left), our visual world exists many

confounders z ∈ Z that affects (or causes) either X or Y ,

leading to spurious correlations by only learning from the

likelihood P (Y |X). To see this, by using Bayes rule:

P (Y |X) =
∑

z
P (Y |X, z)P (z|X), (1)

where the confounder Z introduces the observational bias

via P (z|X). As illustrated in Figure 3 (right), if we inter-

vene X , e.g., do(X), the causal link between Z and X is

cut-off. By applying Bayes rule on the new graph, we have:

P (Y |do(X)) =
∑

z
P (Y |X, z)P (z). (2)

Compared to Eq. (1), z is no longer affected by X , and thus

the intervention deliberately forces X to incorporate every

z fairly, subject to its prior P (z), into the prediction of Y .

Therefore, by using intervention P (Y |do(X)) as the feature

learning objective, we can adjust between “common” and

“sense-making”, thus alleviate the observational bias.

2.2. The Proposed Implementation

To implement the theoretical and imaginative interven-

tion in Eq. (2), we propose the proxy task of predicting

the local context labels of Y ’s RoI. For the confounder

set Z, since we can hardly collect all confounders in real

world, we approximate it to a fixed confounder dictionary

Z = [z1, ..., zN ] in the shape of N × d matrix for practical

use, where N is the category size in dataset (e.g., 80 in MS-

COCO) and d is the feature dimension of RoI. Each entry

zi is the averaged RoI feature of the i-th category samples

in dataset. The feature is pre-trained by Faster R-CNN.

Specifically, given X’s RoI feature x and its contextual

Y ’s RoI whose class label is yc, Eq. (2) can be implemented

as
∑

z P (yc|x, z)P (z). The last layer of the network

for label prediction is the Softmax layer: P (yc|x, z) =
Softmax(fy(x, z)), where fy(·) calculates the logits for N
categories, and the subscript y denotes that f(·) is param-

eterized by Y ’s RoI feature y, motivated by the intuition

that the prediction for yc should be characterized by Y . In

summary, the implementation is defined as:

P (Y |do(X)) := Ez[Softmax(fy(x, z))]. (3)

Note that Ez requires expensive sampling.

Normalized Weighted Geometric Mean (NWGM). We

apply NWGM [12] to approximate the above expectation.

In a nutshell, NWGM3 effeciently moves the outer expecta-

tion into the Softmax as:

Ez[Softmax(fy(x, z))]
NWGM≈ Softmax(Ez[fy(x, z)]). (4)

In this paper, we use the linear model fy(x, z) = W1x +
W2 · gy(z), where W1,W2 ∈ R

N×d denote the fully con-

nected layer. Then the Eq. (4) can be derived as:

Ez[fy(x, z)] = W1x+W2 · Ez[gy(z)]. (5)

Note that the above approximation is reasonable, because

the effect on Y comes from both X and confounder Z (cf.

the right Figure 3). Next, the key is to compute Ez[gy(z)].

3The detailed derivation about NWGM can be found in the Supp..



Feature Model B4 M R C Model B4 M R C

Origin [1, 7]

U
p

-D
o
w

n

36.3 27.7 56.9 120.1

A
o

A
N

et
†

38.9 29.2 58.2 129.8

Obj 36.7 27.8 57.5 122.3 38.1 28.4 58.2 126.0

Only VC 34.5 27.1 56.5 115.2 35.8 27.6 56.8 118.1

+Det 37.5 28.0 58.3 125.9 38.8 28.8 58.7 128.0

+Cor 38.1 28.3 58.5 127.5 38.8 28.9 58.7 128.6

+VC 39.5 29.0 59.0 130.5 39.5 29.3 59.3 131.6

Table 1. The image captioning performances of representative two

models with ablative features on Karpathy split. The metrics: B4,

M, R and C denote BLEU@4, METEOR, ROUGE-L and CIDEr-

D respectively. The grey row highlight our features and the under-

line denotes the current SOTA results.

Model BLEU-4 METEOR ROUGE-L CIDEr-D

Metric c5 c40 c5 c40 c5 c40 c5 c40

Up-Down [1] 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

AoANet [7] 37.3 68.1 28.3 37.2 57.9 72.8 124.0 126.2

Up-Down+VC 37.8 69.1 28.5 37.6 58.2 73.3 124.1 126.2

AoANet†+VC 38.4 69.9 28.8 38.0 58.6 73.8 125.5 128.1

Table 2. The performances of various single models on the online

MS-COCO test server. Up-Down+VC and AoANet†+VC are the

short for concatenated on [1] in Up-Down and AoANet†.

Computing Ez[gy(z)]. We encode gy(·) as the Scaled

Dot-Product Attention to assign weights for different con-

founders in dictionary Z with specific y. Specifically,

given the y and confounder dictionary Z, we can have

Ez[gy(z)] =
∑

z[Softmax(qTK/
√
σ) ⊙ Z]P (z), where

q = W3y, K = W4Z
T , P (z) denotes the prior statis-

tic probability and ⊙ is the element-wise product, W3 and

W4 are the embedding matrices that map each vector to the

common subspace for similarity measure, σ denotes the first

dimension of W3,W4 as a constant scaling factor.

2.3. VC R­CNN

Architecture. Figure 2 illustrates the VC R-CNN archi-

tecture. VC R-CNN takes an image as input and generates

feature map from a CNN backbone (e.g., ResNet101 [5]).

Then, unlike Faster R-CNN [9], we discard the Region Pro-

posal Network (RPN). The ground-truth bounding boxes

are directly utilized to extract the object level representa-

tion with the RoIAlign layer. Finally, each two RoI features

x and y eventually branch into two sibling predictors: Self

Predictor with a fully connected layer to estimate each ob-

ject class, while Context Predictor with the approximated

do-calculus in Eq. (3) to predict the context label.

Training Objectives. The Self-Predictor outputs a dis-

crete probability distribution p = (p[1], ..., p[N ]) over N
categories. The loss can be defined as Lself (p, x

c) =
−log(p[xc]), where xc is the ground-truth class of RoI X .

The Context Predictor loss Lcxt is defined for each two

RoI feature vectors. Considering X as the center object

while Yi is one of the K context objects with ground-truth

label yci , the loss is Lcxt(pi, y
c
i ) = −log(pi[y

c
i ]), where

pi is calculated by pi = P (Yi|do(X)) in Eq. (3) and

pi = (pi[1], ..., pi[N ]) is the probability over N categories.

Finally, the overall mulit-task loss for each RoI X is:

Feature Model Y/N Num Other All Model Y/N Num Other All

Obj [1, 13]

U
p

-D
o
w

n

80.3 42.8 55.8 63.2

M
C

A
N

84.8 49.4 58.4 67.1

Only VC 77.8 37.9 51.6 59.8 80.8 40.7 49.3 60.1

+Det 81.8 44.5 56.8 64.5 84.8 49.2 58.8 67.2

+Cor 81.5 44.6 57.1 64.7 85.0 49.2 58.9 67.4

+VC 82.5 46.0 57.6 65.4 85.2 49.4 59.1 67.7

Table 3. Accuracies of various ablative features on VQA2.0 valida-

tion set. For Up-Down and MCAN, since the Obj achieves almost

equal results with original paper, we just merge the two rows.

L (X) = Lself (p, x
c) +

1

K

∑
i
Lcxt(pi, y

c
i ). (6)

3. Experiments

3.1. Experimental Setup

Dataset: MS-COCO Detection. We apply our VC R-CNN

on the MS-COCO dataset with 80 annotated classes.

Comparative Designs. To evaluate the effectiveness of

our VC R-CNN feature (VC), we present two represen-

tative vision-and-language downstream tasks (i.e., Image

Captioning and VQA) in our experiment. For each task, a

classic model and a state-of-the-art model were both per-

formed for comprehensive comparisons. For each method,

we used the following five ablative feature settings: 1) Obj:

the features based on Faster R-CNN, we adopted the popu-

lar used bottom-up feature [1]; 2) Only VC: pure VC fea-

tures; 3) +Det: the features from training R-CNN with sin-

gle self detection branch without Context Predictor. “+” de-

notes the extracted features are concatenated with the orig-

inal feature; 4) +Cor: the features from training R-CNN by

predicting all context labels (i.e., correlation) without the

intervention; 5) +VC: our full feature with the proposed

implemented intervention, concatenated to the original fea-

ture. For fair comparisons, we retained all the settings and

random seeds in the downstream task models.

3.2. Results and Analysis

Results on Image Captioning. We compared our VC

representation with ablative features on two representative

approaches: Up-Down [1] and AoANet [7] in Table 1.

For Up-Down model, we can observe that with our +VC

trained on MS-COCO, the model can even outperform cur-

rent SOTA method AoANet over most of the metrics. When

comparing +VC with the +Det and +Cor without interven-

tion, results also show absolute gains over all metrics, which

demonstrates the effectiveness of our proposed causal inter-

vention in representation learning. AoANet [7] proposed

an “Attention on Attention” module on feature encoder and

caption decoder with the self-attention mechanism. In our

experiment, we discarded the AoA refining encoder (i.e.,

AoANet†) rather than using full AoANet since the self-

attentive operation on feature can be viewed as an indis-

criminate correlation against our do-expression. From Ta-

ble 1 we can observe that our +VC with AoANet† achieves

a new SOTA performance. We also evaluated our feature
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Figure 4. Qualitative examples of utilizing our VC feature (right) compared with using Obj feature (left). Boxes in images denote the

attention region labeled with name and attention weight. Three rows represent Image Captioning, VQA and VCR task respectively.

Model
test-dev test-std

Y/N Num Other All All

Up-Down [1] 81.82 44.21 56.05 65.32 65.67

MCAN [13] 86.82 54.04 60.52 70.63 70.90

UP-Down+VC 84.26 48.50 58.86 68.15 68.45

MCAN+VC 87.41 53.28 61.44 71.21 71.49

Table 4. Single model accuracies on VQA2.0 test-dev and test set.

on the online COCO test server in Table 2. We can find our

model also achieves the best single-model scores across all

metrics outperforming previous methods significantly.

Results on VQA. In Table 3, we applied our VC feature on

classical Up-Down [1] and recent state-of-the-art method

MCAN [13]. From the results, our proposed +VC outper-

forms all the other ablative representations on three answer

types, achieving the state-of-the-art performance. However,

compared to the image captioning, the gains on VQA with

our VC feature are less significant. The potential reason lies

in the limited ability of the current question understanding,

which cannot be resolved by “visual” common sense. Ta-

ble 4 reports the single model performance of various mod-

els on both test-dev and test-standard sets. Although our VC

feature is limited by the question understanding, we still re-

ceive the absolute gains by just feature concatenation com-

pared to previous methods with complicated module stack.

Qualitative Analysis. We visualize several examples with

our VC feature and previous Up-Down feature in Figure 4.

Any other settings except for feature kept the same. We can

observe that with our VC, models can choose more precise,

reasonable attention area and explicable better performance.

4. Conclusions

We presented a novel unsupervised feature representa-

tion learning method called VC R-CNN that can be based

on any R-CNN framework, supporting a variety of high-

level tasks by using only feature concatenation. The key

novelty of VC R-CNN is that the learning objective is based

on causal intervention, which is fundamentally different

from the conventional likelihood. Extensive experiments

on benchmarks showed impressive performance boosts on

almost all the strong baselines and metrics. In future, we

intend to study the potential of our VC R-CNN applied in

other modalities such as video and 3D point cloud.
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