14,517 research outputs found

    Identification of Railway Ballasted Track Systems from Dynamic Responses of In-Service Trains

    Full text link
    © 2018 American Society of Civil Engineers. Railway track is one of the most important parts of the railway system, and monitoring its condition is essential to ensure the safety of trains and reduce maintenance cost. An adaptive regularization approach is adopted in this paper to identify the parameters of a railway ballasted track system (substructure) from dynamic measurements on in-service vehicles. The vehicle-track interaction system is modeled as a discrete spring-mass model on a Winkler elastic foundation. Damage is defined as the stiffness reduction of the track due to foundation settlement, loosening in the rail fastener, and lack of compaction of the ballast. Accelerometers are installed on the underframe of the train to capture the dynamic responses from which the interaction forces between the vehicle and the railway track are determined. The damage of the railway track can be detected via changes in the interaction force. Numerical results show that the proposed approach can identify all stiffness parameters successfully at a low moving speed and at a high sampling rate when measurement noise is involved

    Flat Dielectric Grating Reflectors with High Focusing Power

    Full text link
    Sub-wavelength dielectric gratings (SWG) have emerged recently as a promising alternative to distributed-Bragg-reflection (DBR) dielectric stacks for broadband, high-reflectivity filtering applications. A SWG structure composed of a single dielectric layer with the appropriate patterning can sometimes perform as well as thirty or forty dielectric DBR layers, while providing new functionalities such as polarization control and near-field amplification. In this paper, we introduce a remarkable property of grating mirrors that cannot be realized by their DBR counterpart: we show that a non-periodic patterning of the grating surface can give full control over the phase front of reflected light while maintaining a high reflectivity. This new feature of dielectric gratings could have a substantial impact on a number of applications that depend on low-cost, compact optical components, from laser cavities to CD/DVD read/write heads.Comment: submitted to Nature Photonic

    Damage identification of supporting structures with a moving sensory system

    Full text link
    © 2017 Elsevier Ltd An innovative approach to identify local anomalies in a structural beam bridge with an instrumented vehicle moving as a sensory system across the bridge. Accelerations at both the axle and vehicle body are measured from which vehicle-bridge interaction force on the structure is determined. Local anomalies of the structure are estimated from this interaction force with the Newton's iterative method basing on the homotopy continuation method. Numerical results with the vehicle moving over simply supported or continuous beams show that the acceleration responses from the vehicle or the bridge structure are less sensitive to the local damages than the interaction force between the wheel and the structure. Effects of different movement patterns and moving speed of the vehicle are investigated, and the effect of measurement noise on the identified results is discussed. A heavier or slower vehicle has been shown to be less sensitive to measurement noise giving more accurate results

    Growth effects on mixed culture of Dunaliella salina and Phaeodactylum tricornutum under different inoculation densities and nitrogen concentrations

    Get PDF
    Dunaliella salina and Phaeodactylum tricornutum are two important marine microalgae rich in bioactive substances and other high-value constituents. In this study, growth effects on mixed culture of these two microalgae were studied under different inoculation proportions (10:0, 7:3, 5:5, 3:7, 0:10) and low, medium and high nitrogen concentrations of 1.4, 14 and 140 mg/l, respectively. By evaluating cell density, OD680, biomass, chlorophyll a and protein content in the culture, it was found that colony cell growth of D. salina and P. tricornutum was increased with the increasing of nitrogen concentrations. Additionally, mixed culture of D. salina and P. tricornutum under high and medium nitrogen concentrations increased the growth of cell colonies (especially when the inoculation proportion was 7:3) and chlorophyll a content by as much as 96.7 and 132.8%. Protein content was also increased by 1.3 and 2.8 folds when compared with that obtained with monoculture of D. salina and P. tricornutum. In contrast, when the mixed culture was done under low concentration of nitrogen, cell colonies growth was restricted due to limitation of nitrogen.Key words: Dunaliella salina, Phaeodactylum tricornutum, inoculation density, mixed-culture, nitrogen concentration

    Static and Dynamic Properties of Semi-Crystalline Polyethylene.

    Get PDF
    Properties of extruded polymers are strongly affected by molecular structure. For two different semi-crystalline polymers, low-density polyethylene (LDPE) and ultra-high molecular weight polyethylene (UHMWPE), this investigation measures the elastic modulus, plastic flow stress and strain-rate dependence of yield stress. Also, it examines the effect of molecular structure on post-necking tensile fracture. The static and dynamic material tests reveal that extruded UHMWPE has a somewhat larger yield stress and much larger strain to failure than LDPE. For both types of polyethylene, the strain at tensile failure decreases with increasing strain-rate. For strain-rates 0.001⁻3400 s-1, the yield stress variation is accurately represented by the Cowper⁻Symonds equation. These results indicate that, at high strain rates, UHMWPE is more energy absorbent than LDPE as a result of its long chain molecular structure with few branches.This work was partially sponsored by Foundation of State Key Laboratory of Explosion Science and Technology of China under Grant No.KFJJ13-1Z, No. YBKT15-02 and Natural Science Foundation of China under Grant No.11102023. The authors would like to thank Chunmei Liu of the First Research Institute of the China Ministry of Public Security for assistance with the static tensile tests.This is the final version of the article. It first appeared from the Multidisciplinary Digital Publishing Institute via http://dx.doi.org/10.3390/polym804007

    A unified framework for data integrity protection in people-centric smart cities

    Full text link
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. With the rapid increase in urbanisation, the concept of smart cities has attracted considerable attention. By leveraging emerging technologies such as the Internet of Things (IoT), artificial intelligence and cloud computing, smart cities have the potential to improve various indicators of residents’ quality of life. However, threats to data integrity may affect the delivery of such benefits, especially in the IoT environment where most devices are inherently dynamic and have limited resources. Prior work has focused on ensuring integrity of data in a piecemeal manner and covering only some parts of the smart city ecosystem. In this paper, we address integrity of data from an end-to-end perspective, i.e., from the data source to the data consumer. We propose a holistic framework for ensuring integrity of data in smart cities that covers the entire data lifecycle. Our framework is founded on three fundamental concepts, namely, secret sharing, fog computing and blockchain. We provide a detailed description of various components of the framework and also utilize smart healthcare as use case

    Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth

    Get PDF
    BACKGROUND: Three-dimensional assembly of graphene hydrogel is rapidly attracting the interest of researchers because of its wide range of applications in energy storage, electronics, electrochemistry, and waste water treatment. Information on the use of graphene hydrogel for biological purposes is lacking, so we conducted a preliminary study to determine the suitability of graphene hydrogel as a substrate for cell growth, which could potentially be used as building blocks for biomolecules and tissue engineering applications. METHODS: A three-dimensional structure of graphene hydrogel was prepared via a simple hydrothermal method using two-dimensional large-area graphene oxide nanosheets as a precursor. RESULTS: The concentration and lateral size of the graphene oxide nanosheets influenced the structure of the hydrogel. With larger-area graphene oxide nanosheets, the graphene hydrogel could be formed at a lower concentration. X-ray diffraction patterns revealed that the oxide functional groups on the graphene oxide nanosheets were reduced after hydrothermal treatment. The three-dimensional graphene hydrogel matrix was used as a scaffold for proliferation of a MG63 cell line. CONCLUSION: Guided filopodia protrusions of MG63 on the hydrogel were observed on the third day of cell culture, demonstrating compatibility of the graphene hydrogel structure for bioapplications

    Perforation resistance of aluminum/polyethylene sandwich structure

    Get PDF
    © 2016 Elsevier Ltd. Ballistic tests were performed on two types of polyethylene core sandwich structures (AA6082/LDPE/AA6082 and AA6082/UHMWPE/AA6082) to investigate their perforation resistance. Bulging and dishing deformation of layered plates were compared under low-velocity impact by hemispherical-nosed projectiles. Different impact failure mechanisms leading to perforation were revealed for laminates composed of a pair of aluminum alloy face sheets separated by a polyethylene interlayer. Using the finite element code Abaqus/Explicit, the perforation behavior and distribution of energy dissipation of each layer during penetration were simulated and analysed. The deformation resistance and anti-penetration properties of polyethylene core sandwich structures were compared with those of monolithic AA6082-T6 plates that had the same areal density. Although the polyethylene interlayer enlarged the plastic deformation zone of the back face, the polyethylene core sandwich structure was a little less effective than the monolithic Al alloy target at resisting hemispherical-nosed projectile impact.The authors gratefully acknowledge the Foundation of State Key Laboratory of Explosion Science and Technology of China under Grant No. KFJJ13-1Z, and Natural Science Foundation of China under Grant No. 11102023, 11172071

    Influence of interfacial nitrogen on edge charge trapping at the interface of gate oxide/drain extension in metal-oxide-semiconductor transistors

    Get PDF
    The influence of interfacial nitrogen on edge charge trapping at the interface of gate oxide/drain extension in metal-oxide-semiconductor transistors was investigated. Positive edge charge trapping was observed for both pure and nitrided oxides with an oxide thickness of 6.5 nm. Results showed that nitrogen at the interface enhance the edge charge trapping.published_or_final_versio

    Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135287/1/wnan1403.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135287/2/wnan1403_am.pd
    corecore