9,363 research outputs found

    An fMRI study of grammatical morpheme processing associated with nouns and verbs in Chinese

    Get PDF
    This study examined whether the degree of complexity of a grammatical component in a language would impact on its representation in the brain through identifying the neural correlates of grammatical morpheme processing associated with nouns and verbs in Chinese. In particular, the processing of Chinese nominal classifiers and verbal aspect markers were investigated in a sentence completion task and a grammaticality judgment task to look for converging evidence. The Chinese language constitutes a special case because it has no inflectional morphology per se and a larger classifier than aspect marker inventory, contrary to the pattern of greater verbal than nominal paradigmatic complexity in most European languages. The functional imaging results showed BA47 and left supplementary motor area and superior medial frontal gyrus more strongly activated for classifier processing, and the left posterior middle temporal gyrus more responsive to aspect marker processing. We attributed the activation in the left prefrontal cortex to greater processing complexity during classifier selection, analogous to the accounts put forth for European languages, and the left posterior middle temporal gyrus to more demanding verb semantic processing. The overall findings significantly contribute to cross-linguistic observations of neural substrates underlying processing of grammatical morphemes from an analytic and a classifier language, and thereby deepen our understanding of neurobiology of human language.published_or_final_versio

    Entanglement generation outside a Schwarzschild black hole and the Hawking effect

    Full text link
    We examine the Hawking effect by studying the asymptotic entanglement of two mutually independent two-level atoms placed at a fixed radial distance outside a Schwarzschild black hole in the framework of open quantum systems. We treat the two-atom system as an open quantum system in a bath of fluctuating quantized massless scalar fields in vacuum and calculate the concurrence, a measurement of entanglement, of the equilibrium state of the system at large times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find, for all three vacuum cases, that the atoms turn out to be entangled even if they are initially in a separable state as long as the system is not placed right at the even horizon. Remarkably, only in the Unruh vacuum, will the asymptotic entanglement be affected by the backscattering of the thermal radiation off the space-time curvature. The effect of the back scatterings on the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.Comment: 15 pages, no figures, Revte

    Effect of Nanosilica on the Sulfate Attack Resistivity of Cement Mortar

    Get PDF
    The effect of nanosilica on the sulfate attack resistivity of cement mortar was investigated through study on the mechanical property evolution and the length change of the cement mortar under 5 wt.% sodium sulfate for 6 months. Meanwhile, the effects were compared with those of fly ash-replacement mortar. Results showed that by taking the advantages of nanosilica and fly ash in improving the property of cement mortar at early and later ages, the sulfate attack resistance of cement mortar can be enhanced in mechanical property increase and expansion reduction. Further, it implies that a combination of both pozzolans could enhance the sulfate attack resistivity of cement-based materials

    Random laser action in ZnO nanorod arrays embedded in ZnO epilayers

    Get PDF
    Random laser action with coherent feedback has been observed in ZnO nanorod arrays embedded in ZnO epilayers. The sample was fabricated by depositing a MgO buffer layer and followed by a layer of ZnO thin film onto a vertically well-aligned ZnO nanorod arrays grown on sapphire substrate. Under 355 nm optical excitation at room temperature, sharp lasing peaks emit at around 390 nm with a linewidth less than 0.4 nm has been observed in all directions. In addition, the dependence of the lasing threshold intensity on the excitation area is shown in good agreement with the random laser theory. Hence, it is demonstrated that random laser action can also be supported in ZnO nanorod arrays. (C) 2004 American Institute of Physics.open11173186sciescopu

    Case-Fatality Ratio of Blood Culture-Confirmed Typhoid Fever in Dhaka, Bangladesh.

    Full text link
    With impending rollout of new conjugate typhoid vaccines, better estimates of typhoid case-fatality ratio are needed for countries to set priorities for public health programs. We enrolled 1425 patients of all ages with blood culture-confirmed Salmonella Typhi from laboratory networks serving inpatients and outpatients in Dhaka, Bangladesh. Participants were asked about symptoms and complications including death experienced over a median 3-month period following blood culture diagnosis. Four fatal cases were identified (case-fatality ratio of 0.3% [95% confidence interval, .05%-.55%]). Applying this case-fatality ratio to global typhoid burden estimates would reduce deaths by 70%

    Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation

    Get PDF
    Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins

    Design and Analysis of Nanotube-Based Memory Cells

    Get PDF
    In this paper, we proposed a nanoelectromechanical design as memory cells. A simple design contains a double-walled nanotube-based oscillator. Atomistic materials are deposed on the outer nanotube as electrodes. Once the WRITE voltages are applied on electrodes, the induced electromagnetic force can overcome the interlayer friction between the inner and outer tubes so that the oscillator can provide stable oscillations. The READ voltages are employed to indicate logic 0/1 states based on the position of the inner tube. A new continuum modeling is developed in this paper to analyze large models of the proposed nanoelectromechanical design. Our simulations demonstrate the mechanisms of the proposed design as both static and dynamic random memory cells

    Cooperative secretions facilitate host range expansion in bacteria

    Get PDF
    The majority of emergent human pathogens are zoonotic in origin, that is, they can transmit to humans from other animals. Understanding the factors underlying the evolution of pathogen host range is therefore of critical importance in protecting human health. There are two main evolutionary routes to generalism: organisms can tolerate multiple environments or they can modify their environments to forms to which they are adapted. Here we use a combination of theory and a phylogenetic comparative analysis of 191 pathogenic bacterial species to show that bacteria use cooperative secretions that modify their environment to extend their host range and infect multiple host species. Our results suggest that cooperative secretions are key determinants of host range in bacteria, and that monitoring for the acquisition of secreted proteins by horizontal gene transfer can help predict emerging zoonoses

    Geometric phase outside a Schwarzschild black hole and the Hawking effect

    Full text link
    We study the Hawking effect in terms of the geometric phase acquired by a two-level atom as a result of coupling to vacuum fluctuations outside a Schwarzschild black hole in a gedanken experiment. We treat the atom in interaction with a bath of fluctuating quantized massless scalar fields as an open quantum system, whose dynamics is governed by a master equation obtained by tracing over the field degrees of freedom. The nonunitary effects of this system are examined by analyzing the geometric phase for the Boulware, Unruh and Hartle-Hawking vacua respectively. We find, for all the three cases, that the geometric phase of the atom turns out to be affected by the space-time curvature which backscatters the vacuum field modes. In both the Unruh and Hartle-Hawking vacua, the geometric phase exhibits similar behaviors as if there were thermal radiation at the Hawking temperature from the black hole. So, a measurement of the change of the geometric phase as opposed to that in a flat space-time can in principle reveal the existence of the Hawking radiation.Comment: 14 pages, no figures, a typo in the References corrected, version to appear in JHEP. arXiv admin note: text overlap with arXiv:1109.033
    corecore