157 research outputs found

    Exponential ergodicity of the jump-diffusion CIR process

    Get PDF
    In this paper we study the jump-diffusion CIR process (shorted as JCIR), which is an extension of the classical CIR model. The jumps of the JCIR are introduced with the help of a pure-jump L\'evy process (Jt,t≥0)(J_t, t \ge 0). Under some suitable conditions on the L\'evy measure of (Jt,t≥0)(J_t, t \ge 0), we derive a lower bound for the transition densities of the JCIR process. We also find some sufficient condition guaranteeing the existence of a Forster-Lyapunov function for the JCIR process, which allows us to prove its exponential ergodicity.Comment: 14 page

    A Probabilistic Look at Growth-Fragmentation Equations

    Get PDF
    International audienceIn this note, we consider general growth-fragmentation equations from a probabilistic point of view. Using Foster-Lyapunov techniques, we study the recurrence of the associated Markov process depending on the growth and fragmentation rates. We prove the existence and uniqueness of its stationary distribution, and we are able to derive precise bounds for its tails in the neighborhoods of both 0 and +∞. This study is systematically compared to the results obtained so far in the literature for this class of integro-differential equations

    Invariant, super and quasi-martingale functions of a Markov process

    Full text link
    We identify the linear space spanned by the real-valued excessive functions of a Markov process with the set of those functions which are quasimartingales when we compose them with the process. Applications to semi-Dirichlet forms are given. We provide a unifying result which clarifies the relations between harmonic, co-harmonic, invariant, co-invariant, martingale and co-martingale functions, showing that in the conservative case they are all the same. Finally, using the co-excessive functions, we present a two-step approach to the existence of invariant probability measures

    Relative Value Iteration for Stochastic Differential Games

    Full text link
    We study zero-sum stochastic differential games with player dynamics governed by a nondegenerate controlled diffusion process. Under the assumption of uniform stability, we establish the existence of a solution to the Isaac's equation for the ergodic game and characterize the optimal stationary strategies. The data is not assumed to be bounded, nor do we assume geometric ergodicity. Thus our results extend previous work in the literature. We also study a relative value iteration scheme that takes the form of a parabolic Isaac's equation. Under the hypothesis of geometric ergodicity we show that the relative value iteration converges to the elliptic Isaac's equation as time goes to infinity. We use these results to establish convergence of the relative value iteration for risk-sensitive control problems under an asymptotic flatness assumption

    Multiplicative random walk Metropolis-Hastings on the real line

    Full text link
    In this article we propose multiplication based random walk Metropolis Hastings (MH) algorithm on the real line. We call it the random dive MH (RDMH) algorithm. This algorithm, even if simple to apply, was not studied earlier in Markov chain Monte Carlo literature. The associated kernel is shown to have standard properties like irreducibility, aperiodicity and Harris recurrence under some mild assumptions. These ensure basic convergence (ergodicity) of the kernel. Further the kernel is shown to be geometric ergodic for a large class of target densities on R\mathbb{R}. This class even contains realistic target densities for which random walk or Langevin MH are not geometrically ergodic. Three simulation studies are given to demonstrate the mixing property and superiority of RDMH to standard MH algorithms on real line. A share-price return data is also analyzed and the results are compared with those available in the literature

    Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force

    Full text link
    We discuss the ergodic properties of quasi-Markovian stochastic differential equations, providing general conditions that ensure existence and uniqueness of a smooth invariant distribution and exponential convergence of the evolution operator in suitably weighted L∞L^{\infty} spaces, which implies the validity of central limit theorem for the respective solution processes. The main new result is an ergodicity condition for the generalized Langevin equation with configuration-dependent noise and (non-)conservative force

    Fluid and Diffusion Limits for Bike Sharing Systems

    Full text link
    Bike sharing systems have rapidly developed around the world, and they are served as a promising strategy to improve urban traffic congestion and to decrease polluting gas emissions. So far performance analysis of bike sharing systems always exists many difficulties and challenges under some more general factors. In this paper, a more general large-scale bike sharing system is discussed by means of heavy traffic approximation of multiclass closed queueing networks with non-exponential factors. Based on this, the fluid scaled equations and the diffusion scaled equations are established by means of the numbers of bikes both at the stations and on the roads, respectively. Furthermore, the scaling processes for the numbers of bikes both at the stations and on the roads are proved to converge in distribution to a semimartingale reflecting Brownian motion (SRBM) in a N2N^{2}-dimensional box, and also the fluid and diffusion limit theorems are obtained. Furthermore, performance analysis of the bike sharing system is provided. Thus the results and methodology of this paper provide new highlight in the study of more general large-scale bike sharing systems.Comment: 34 pages, 1 figure

    A Brownian particle in a microscopic periodic potential

    Full text link
    We study a model for a massive test particle in a microscopic periodic potential and interacting with a reservoir of light particles. In the regime considered, the fluctuations in the test particle's momentum resulting from collisions typically outweigh the shifts in momentum generated by the periodic force, and so the force is effectively a perturbative contribution. The mathematical starting point is an idealized reduced dynamics for the test particle given by a linear Boltzmann equation. In the limit that the mass ratio of a single reservoir particle to the test particle tends to zero, we show that there is convergence to the Ornstein-Uhlenbeck process under the standard normalizations for the test particle variables. Our analysis is primarily directed towards bounding the perturbative effect of the periodic potential on the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications of the conten
    • …
    corecore