5 research outputs found

    Mesure du champ de déplacement transverse par voie optique appliquée au thermoformage du verre

    Get PDF
    L'objectif de cette étude est de modéliser le comportement thermomécanique du verre au cours d'un procédé complet de thermoformage (montée en température, palier de travail, refroidissement). Le verre étant absorbant, émissif et non-diffusant, la prise en compte du rayonnement dans la modélisation du transfert de chaleur s'avère être indispensable.Après avoir présenté la problématique associée à ce projet, nous décrirons le banc expérimental développé au sein du laboratoire ; il devrait permettre de valider expérimentalement les résultats numériques issus de notre modélisation. Ce banc se compose d'un four de thermoformage adapté et couplé à un système optique de mesures de champ de déplacement et de température de la surface supérieure de la plaque de verre. Le dispositif et la méthode employés pour mesurer le déplacement, basés sur l'utilisation de la lumière structurée, seront au centre de cette présentation

    Numerical and experimental study of glass plate forming

    No full text
    L’objectif de ce travail consiste à accroître la connaissance sur le thermoformage du verre. Ce procédé, largement mis en œuvre par le CERFAV, est basé sur la déformation du verre au sein d’un four électrique radiant sous l’effet de la température. Deux axes de travail ont été identifiés : le développement d’un outil de simulation numérique, et la conception d’un banc expérimental original. D’un point de vue mécanique, le modèle viscoélastique rhéologique choisi permet de décrire le comportement du verre successivement élastique linéaire, viscoélastique puis visqueux, de l’ambiance jusqu’à 800°C. D’un point de vue thermique, le couplage de la conduction avec le rayonnement, validé pour des cas tests issus de la littérature, a été appliqué dans des conditions similaires au thermoformage sans déformation. Pour ce faire, le code radiatif RAD2D développé au LEMTA a été généralisé au verre et implémenté dans le logiciel MSC MARC©. La phase expérimentale a été marquée par la conception et le développement d’un banc d’essais original autour d’un four de thermoformage. Les mesures sans contact de déplacement vertical et de température de la face supérieure du verre ont ainsi été comparées qualitativement aux résultats numériques. Par ailleurs, le four a fait l’objet d’un protocole de qualification (température et flux) qui permettra d’affiner la modélisation. En parallèle, une campagne de détermination des propriétés thermomécaniques du verre a été initiée en vue de paramétrer plus fidèlement le modèle numérique. En conclusion cette première étude a permis la mise en place d’outils performants de calcul et de mesure, les premiers résultats probants devront être complétés par une seconde étude.This study aims at increasing knowledge on glass forming. This process, studied and developed by the CERFAV, is based on the deformation of glass by increasing temperature within an electric radiant furnace. Two investigation tools were developed in parallel: a computational program dedicated to the numerical simulation, and an original experimental set up. The rheological viscoelastic model implemented into the MSCMARC© software for mechanics was chosen to describe the behavior of glass at temperature ranging from ambient to 800°C in turn elastic, viscoelastic and viscous. The coupled code (conduction with radiation), validated for test cases found in the literature, were applied to benchmarks similar to glass forming with no deformation. The radiative home-made RAD2D code based on the Finite Volume Method was adapted to glass and implemented into MSCMARC©. The experimental part of the study consisted in designing and developing an original set up based on a thermoforming furnace. The no-contact-measurements of vertical displacement and temperature on the upper face of the glass were qualitatively compared to our innovative numerical results. In addition, the furnace was characterized in terms of temperature and fluxes and a determination campaign of the thermomechanical properties of the glass was initiated in order to provide data for the refinement of the model. To conclude, efficient tools for calculation and measurement were developed in the present study. The first results are convincing and will be supplemented by further investigations

    Étude numérique et expérimentale du thermoformage d'une plaque de verre

    No full text
    This study aims at increasing knowledge on glass forming. This process, studied and developed by the CERFAV, is based on the deformation of glass by increasing temperature within an electric radiant furnace. Two investigation tools were developed in parallel: a computational program dedicated to the numerical simulation, and an original experimental set up.The rheological viscoelastic model implemented into the MSCMARC© software for mechanics was chosen to describe the behavior of glass at temperature ranging from ambient to 800°C in turn elastic, viscoelastic and viscous.The coupled code (conduction with radiation), validated for test cases found in the literature, were applied to benchmarks similar to glass forming with no deformation. The radiative home-made RAD2D code based on the Finite Volume Method was adapted to glass and implemented into MSCMARC©.The experimental part of the study consisted in designing and developing an original set up based on a thermoforming furnace. The no-contact-measurements of vertical displacement and temperature on the upper face of the glass were qualitatively compared to our innovative numerical results. In addition, the furnace was characterized in terms of temperature and fluxes and a determination campaign of the thermomechanical properties of the glass was initiated in order to provide data for the refinement of the model.To conclude, efficient tools for calculation and measurement were developed in the present study. The first results are convincing and will be supplemented by further investigations.L'objectif de ce travail consiste à accroître la connaissance sur le thermoformage du verre. Ce procédé, largement mis en œuvre par le CERFAV, est basé sur la déformation du verre au sein d'un four électrique radiant sous l'effet de la température.Deux axes de travail ont été identifiés : le développement d'un outil de simulation numérique, et la conception d'un banc expérimental original. D'un point de vue mécanique, le modèle viscoélastique rhéologique choisi permet de décrire le comportement du verre successivement élastique linéaire, viscoélastique puis visqueux, de l'ambiance jusqu'à 800°C. D'un point de vue thermique, le couplage de la conduction avec le rayonnement, validé pour des cas tests issus de la littérature, a été appliqué dans des conditions similaires au thermoformage sans déformation. Pour ce faire, le code radiatif RAD2D développé au LEMTA a été généralisé au verre et implémenté dans le logiciel MSCMARC©.La phase expérimentale a été marquée par la conception et le développement d'un banc d'essais original autour d'un four de thermoformage. Les mesures sans contact de déplacement vertical et de température de la face supérieure du verre ont ainsi été comparées qualitativement aux résultats numériques. Par ailleurs, le four a fait l'objet d'un protocole de qualification (température et flux) qui permettra d'affiner la modélisation. En parallèle, une campagne de détermination des propriétés thermomécaniques du verre a été initiée en vue de paramétrer plus fidèlement le modèle numérique.En conclusion cette première étude a permis la mise en place d'outils performants de calcul et de mesure, les premiers résultats probants devront être complétés par une seconde étude

    Glass sagging simulation with improved calculation of radiative heat transfer by the optimized reciprocity Monte Carlo method

    No full text
    International audienceGlass sagging is used to process glass industrial products such as windscreens, mirrors or lenses. A 2D glass sagging process, simulated with the Finite Element Method (FEM), is presented in this work. Different thermal cases are reviewed with special care brought to radiative transfer model, with an optimized reciprocity Monte Carlo method used as the reference. Results show that ignoring radiative transfer is a too rough hypothesis. This leads to large errors on the glass temperature distribution, on the forming process and on the final shape in case of glass sagging without mold. However, predefining glass temperature or using Rosseland approximation give acceptable results, less accurate than Monte Carlo simulations especially for a fine prediction of the transfer as a function of time, but with smaller CPU times

    Combined Temperature and Deformation Measurement During Glass Forming in a Real Scale Setup

    No full text
    International audienceAn experimental setup has been built and instrumented with non intrusive measurement methods aiming at measuring temperature fields and deformations of a soda-lime-silica glass piece during thermoforming process. A real scale furnace has been used and a realistic thermal load case applied. Infrared measurements based on the Christiansen effect have been performed on the present glass sample, providing the temperature distribution on the sample surface through IR images at 7.8 mu m. Piece deformation has been registered simultaneously, using a DIC (Digital Image Correlation) technique combined with a fringe projection method. Results have been analysed in a combined manner, showing a non symmetrical deformation despite a quite homogeneous thermal field, which could be explained by mould/glass contact problems. The non intrusive measurement technique has been proven to be relevant for a possible control of the thermal environment of the piece during the thermoforming process. Further tests should be carried out on a wide range of shapes and glass types
    corecore