22 research outputs found

    Deep-Sea Nematodes Actively Colonise Sediments, Irrespective of the Presence of a Pulse of Organic Matter: Results from an In-Situ Experiment

    Get PDF
    A colonisation experiment was performed in situ at 2500 m water depth at the Arctic deep-sea long-term observatory HAUSGARTEN to determine the response of deep-sea nematodes to disturbed, newly available patches, enriched with organic matter. Cylindrical tubes,laterally covered with a 500 µm mesh, were filled with azoic deep-sea sediment and 13C-labelled food sources (diatoms and bacteria). After 10 days of incubation the tubes were analysed for nematode response in terms of colonisation and uptake. Nematodes actively colonised the tubes,however with densities that only accounted for a maximum of 2.13% (51 ind.10 cm−2) of the ambient nematode assemblages. Densities did not differ according to the presence or absence of organic matter, nor according to the type of organic matter added. The fact that the organic matter did not function as an attractant to nematodes was confirmed by the absence of notable 13C assimilation by the colonising nematodes. Overall, colonisationappears to be a process that yields reproducible abundance and diversity patterns, with certain taxa showing more efficiency. Together with the high variability between the colonising nematode assemblages, this lends experimental support to the existence of a spatio-temporal mosaic that emerges from highly localised, partially stochastic community dynamics

    Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula

    Get PDF
    Background: Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely toinfluence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide.Principal Findings: The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (.2000 individuals per 10 cm2) and showed below-surface maxima at a sediment depth of 2–3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable 13C isotopic signals (ranging between 221.9760.86% and 224.8561.89%) were indicative of a phytoplankton-derived food source.Conclusion: The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine nematodes and may be responsible for the successful colonisation by this single species

    Energetic changes throughout early ontogeny of the brooding Antarctic sea star Rhopiella hirsuta (Koehler, 1920)

    No full text
    An unusually high proportion of Antarctic echinoderms brood their young. Protection, reproductive constraints, low temperatures and limited food supply are all suggested motives for this reproductive pattern. This study looks at the reproductive energetics of the Antarctic asteroid Rhopiella hirsuta, and to establish the dynamics of feeding and elemental composition throughout its early juvenile development. Brooding females were analysed in terms of adult size, brood size, and juvenile size with non-significant trends occurring with depth. Four brooding females were frozen straight after sampling and enabled the study of changes in elemental composition throughout embryo and early juvenile development with regard to their feeding mode. Morphological and elemental analyses indicate aseasonality of reproduction and lecithotrophic early ontogeny in this species. The most advanced juveniles found were significantly different of all earlier stages, with an increase in dry weight to 5.87 (± 1.08) mg suggesting growth, but a high C:N ratio of 8.60 (± 0.59) that would indicate lecithotrophy. However, as the increase in DW was attributed to an increase in carbon, but not to an increase in nitrogen, it was not possible for the food source to be of organic origin

    Biochemical characteristics of surface sediments on the eastern Weddell Sea shelf, Antarctica: is there any evidence of seasonal patterns?

    No full text
    9 pages, 4 figures, 4 tablesBiochemical characteristics of seafloor sediment off Austasen in the southeastern Weddell Sea were assayed in samples recovered in the early autumn and late spring of 2000 and 2003, respectively. Sediment was separated in the grain-size fractions >200 μm and <200 μm to distinguish biochemical characteristics in the fraction available for benthic suspension feeders (<200 μm). In the bulk sediment, the lipid (LPD) and carbohydrate (CHO) contents were significantly different between seasons with higher LPD content in the early autumn and higher CHO content in the late spring. In the grain-size fractions <200 μm, the LPD and protein (PRT) contents were significantly higher in the early autumn meaning that in this season the fraction available for benthic suspension feeders presented higher nutritive value. The relatively higher CHO concentrations observed in each fraction in the late spring were attributed to refractory matter, whereas the higher PRT and LPD concentrations found during the early autumn were associated with planktonic material settled after the summer phytoplankton bloom. Our results suggest that there is seasonal variation in the composition of organic matter in the sediment, with better nutritive quality in the early autumn, especially in the grain-size fraction available for benthic suspension feeders. These variations also suggest that the benthic community exploits the fresh organic matter accumulated after the summer throughout the Antarctic dark months leaving the sediment almost exhaust of LPD and with higher CHO contents, presumably of refractory nature, at the onset of the seasonal phytoplankton bloom of the following yearThe authors wish to thank the Captain and crew of the RV “Polarstern” for their eYcient help during the Weld work. The present work was partially funded by the Spanish Ministry of Education and Science through the project FILANT (REN2003-04236). The original manuscript improved with the comments of C.R. Smith and one anonymous reviewerPeer reviewe

    Reproductive morphology of the deep-sea protobranch bivalves Yoldiella ecaudata, Yoldiella sabrina, and Yoldiella valettei (Yoldiidae) from the Southern Ocean

    No full text
    The protobranch bivalves of the Southern Ocean are poorly understood ecologically, despite their high abundances in soft sediments from the shelf to the deep sea. The subclass has a long evolutionary history predating the formation of the polar front, and knowledge of their reproductive biology is key to understanding better their successful radiation into the Southern Ocean, and within deep-sea basins. In this study, we for the first time investigate the reproductive morphology of three deep-water protobranchs; Yoldiella ecaudata from 500 m in the Amundsen Sea; Y. sabrina from between 200 and 4,730 m in the Amundsen Sea, Scotia Sea, and South Atlantic; and Y. valettei from 1,000 m in the Scotia Sea. All three species demonstrate evidence of lecithotrophic larval development with maximum oocyte size of 130.4, 187.9, and 120.6 µm in Y. ecaudata, Y. sabrina, and Y. valettei, respectively, further supported by prodissoconch I measurements. There is evidence for simultaneous hermaphroditism in Y. valettei. Asynchronous oocyte development within specimens of Y. ecaudata and Y. valettei is described, and also between populations of Y. sabrina separated by depth. The reproductive characteristics, comparable to those of North Atlantic deep-sea protobranch species, are discussed in the context of the cold thermally stable conditions prevailing on the deep-Antarctic continental shelf and deep sea. The requirement for reclassification of this complex subclass is also discussed in relation to observed soft anatomy and shell characteristics
    corecore