16 research outputs found

    The transcription factor Spores Absent A is a PKA dependent inducer of Dictyostelium sporulation

    Get PDF
    Abstract Sporulation in Dictyostelium fruiting bodies evolved from amoebozoan encystation with both being induced by cAMP acting on PKA, but with downstream components still being unknown. Using tagged mutagenesis to find missing pathway components, we identified a sporeless mutant defective in a nuclear protein, SpaA. Expression of prespore genes was strongly reduced in spaA- cells, while expression of many spore stage genes was absent. Chromatin immunoprecipitation (ChIP) of a SpaA-YFP gene fusion showed that (pre)spore gene promoters bind directly to SpaA, identifying SpaA as a transcriptional regulator. SpaA dependent spore gene expression required PKA in vivo and was stimulated in vitro by the membrane-permeant PKA agonist 8Br-cAMP. The PKA agonist also promoted SpaA binding to (pre)spore promoters, placing SpaA downstream of PKA. Sequencing of SpaA-YFP ChIPed DNA fragments revealed that SpaA binds at least 117 (pre)spore promoters, including those of other transcription factors that activate some spore genes. These factors are not in turn required for spaA expression, identifying SpaA as the major trancriptional inducer of sporulation

    The Dictyostelium discoideum acaA Gene Is Transcribed from Alternative Promoters during Aggregation and Multicellular Development

    Get PDF
    Background: Extracellular cAMP is a key extracellular signaling molecule that regulates aggregation, cell differentiation and morphogenesis during multi-cellular development of the social amoeba Dictyostelium discoideum. This molecule is produced by three different adenylyl cyclases, encoded by the genes acaA, acrA and acgA, expressed at different stages of development and in different structures. Methodology/Principal Findings: This article describes the characterization of the promoter region of the acaA gene, showing that it is transcribed from three different alternative promoters. The distal promoter, promoter 1, is active during the aggregation process while the more proximal promoters are active in tip-organiser and posterior regions of the structures. A DNA fragment containing the three promoters drove expression to these same regions and similar results were obtained by in situ hybridization. Analyses of mRNA expression by quantitative RT-PCR with specific primers for each of the three transcripts also demonstrated their different temporal patterns of expression. Conclusions/Significance: The existence of an aggregation-specific promoter can be associated with the use of cAMP as chemo-attractant molecule, which is specific for some Dictyostelium species. Expression at late developmental stages indicates that adenylyl cyclase A might play a more important role in post-aggregative development than previously considered

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    A Triple Test for Behavioral Economics Models and Public Health Policy

    Full text link

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Epistasis analysis with global transcriptional phenotypes

    Get PDF
    Classical epistasis analysis can determine the order of function of genes in pathways using morphological, biochemical and other phenotypes. It requires knowledge of the pathway's phenotypic output and a variety of experimental expertise and so is unsuitable for genome-scale analysis. Here we used microarray profiles of mutants as phenotypes for epistasis analysis. Considering genes that regulate activity of protein kinase A in Dictyostelium, we identified known and unknown epistatic relationships and reconstructed a genetic network with microarray phenotypes alone. This work shows that microarray data can provide a uniform, quantitative tool for large-scale genetic network analysis

    CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein

    No full text
    The HOXA9 homeodomain protein is a key regulator of hematopoiesis and embryonic development. HOXA9 is expressed in primitive hematopoietic cells, and its prompt downregulation is associated with myelocytic maturation. Although transcriptional inactivation of HOXA9 during hematopoietic differentiation has been established, little is known about the biochemical mechanisms underlying the subsequent removal of HOXA9 protein. Here we report that the CUL-4A ubiquitylation machinery controls the stability of HOXA9 by promoting its ubiquitylation and proteasome-dependent degradation. The homeodomain of HOXA9 is responsible for CUL-4A-mediated degradation. Interfering CUL-4A biosynthesis by ectopic expression or by RNA-mediated interference resulted in alterations of the steady-state levels of HOXA9, mirrored by impairment of the ability of 32D myeloid progenitor cells to undergo proper terminal differentiation into granulocytes. These results revealed a novel regulatory mechanism of hematopoiesis by ubiquitin-dependent proteolysis
    corecore