76 research outputs found

    The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair.</p> <p>Methods</p> <p>Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors.</p> <p>Results</p> <p>We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself.</p> <p>Conclusions</p> <p>The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay.</p

    MRS-guided HDR brachytherapy boost to the dominant intraprostatic lesion in high risk localised prostate cancer

    Get PDF
    BACKGROUND: It is known that the vast majority of prostate cancers are multifocal. However radical radiotherapy historically treats the whole gland rather than individual cancer foci.Magnetic resonance spectroscopy (MRS) can be used to non-invasively locate individual cancerous tumours in prostate. Thus an intentionally non-uniform dose distribution treating the dominant intraprostatic lesion to different dose levels than the remaining prostate can be delivered ensuring the maximum achievable tumour control probability.The aim of this study is to evaluate, using radiobiological means, the feasibility of a MRS-guided high dose rate (HDR) brachytherapy boost to the dominant lesion.\ud \ud METHODS: Computed tomography and MR/MRS were performed for treatment planning of a high risk localised prostate cancer. Both were done without endorectal coil, which distorts shape of prostate during the exams.Three treatment plans were compared:- external beam radiation therapy (EBRT) only- combination of EBRT and HDR brachytherapy- combination of EBRT and HDR brachytherapy with a synchronous integrated boost to the dominant lesionThe criteria of plan comparison were: the minimum, maximum and average doses to the targets and organs at risk; dose volume histograms; biologically effective doses for organs at risk and tumour control probability for the target volumes consisting of the dominant lesion as detected by MR/MRS and the remaining prostate volume.\ud \ud RESULTS: Inclusion of MRS information on the location of dominant lesion allows a safe increase of the dose to the dominant lesion while dose to the remaining target can be even substantially decreased keeping the same, high tumour control probability. At the same time an improved urethra sparing was achieved comparing to the treatment plan using a combination of EBRT and uniform HDR brachytherapy.\ud \ud CONCLUSIONS: MRS-guided HDR brachytherapy boost to dominant lesion has the potential to spare the normal tissue, especially urethra, while keeping the tumour control probability high

    Single extreme low dose/low dose rate irradiation causes alteration in lifespan and genome instability in primary human cells

    Get PDF
    To investigate the long-term biological effect of extreme low dose ionising radiation, we irradiated normal human fibroblasts (HFLIII) with carbon ions (290 MeV u−1, 70 keV μm−1) and γ-rays at 1 mGy (total dose) once at a low dose rate (1 mGy 6–8 h−1), and observed the cell growth kinetics up to 5 months by continuous culturing. The growth of carbon-irradiated cells started to slow down considerably sooner than that of non-irradiated cells before reaching senescence. In contrast, cells irradiated with γ-rays under similar conditions did not show significant deviation from the non-irradiated cells. A DNA double strand break (DSB) marker, γ-H2AX foci, and a DSB repair marker, phosphorylated DNA-PKcs foci, increased in number when non-irradiated cells reached several passages before senescence. A single low dose/low dose rate carbon ion exposure further raised the numbers of these markers. Furthermore, the numbers of foci for these two markers were significantly reduced after the cells became fully senescent. Our results indicate that high linear energy transfer (LET) radiation (carbon ions) causes different effects than low LET radiation (γ-rays) even at very low doses and that a single low dose of heavy ion irradiation can affect the stability of the genome many generations after irradiation

    Surgical Treatment of Renal Cell Cancer Liver Metastases: A Population-Based Study

    Get PDF
    Background: To evaluate outcomes of surgical treatment in patients with hepatic metastases from renal-cell carcinoma in the Netherlands, and to identify prognostic factors for survival after resection. Renal-cell carcinoma has an incidence of 2,000 new patients in the Netherlands each year (12.5/100,000 inhabitants). According to literature, half of these patients ultimately develop distant metastases with 20% involvement of the liver. Resection of renal-cell carcinoma liver metastases (RCCLM) is performed in only a minority of patients. Hence, little is known about outcome of resectable RCCLM. Methods: Patients were retrieved from local databases of theNetherlands Task Force for Liver Surgery (14 centers) and from the Dutch collective pathology database. Survival and prognostic factors were determined by Kaplan-Meier analysis and log rank test. Results: Thirty-three patients were identified who underwent resection (n = 29) or local ablation (n = 4) of RCCLM in the Netherlands between 1990 and 2008. These patients comprise 0.5% to 1% of the total population of patients diagnosed with RCCLM in that period. There was no operative mortality. The overall survival at 1, 3, and 5 years was 79, 47, and 43%, respectively. Metachronous metastases (n = 23, P = 0.03) and radical resection (n = 19, P < 0.001) were statistically significant prognosticators of ov

    Standardized and reproducible methodology for the comprehensive and systematic assessment of surgical resection margins during breast-conserving surgery for invasive breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary goal of breast-conserving surgery (BCS) is to completely excise the tumor and achieve "adequate" or "negative" surgical resection margins while maintaining an acceptable level of postoperative cosmetic outcome. Nevertheless, precise determination of the adequacy of BCS has long been debated. In this regard, the aim of the current paper was to describe a standardized and reproducible methodology for comprehensive and systematic assessment of surgical resection margins during BCS.</p> <p>Methods</p> <p>Retrospective analysis of 204 BCS procedures performed for invasive breast cancer from August 2003 to June 2007, in which patients underwent a standard BCS resection and systematic sampling of nine standardized re-resection margins (superior, superior-medial, superior-lateral, medial, lateral, inferior, inferior-medial, inferior-lateral, and deep-posterior). Multiple variables (including patient, tumor, specimen, and follow-up variables) were evaluated.</p> <p>Results</p> <p>6.4% (13/204) of patients had positive BCS specimen margins (defined as tumor at inked edge of BCS specimen) and 4.4% (9/204) of patients had close margins (defined as tumor within 1 mm or less of inked edge but not at inked edge of BCS specimen). 11.8% (24/204) of patients had at least one re-resection margin containing additional disease, independent of the status of the BCS specimen margins. 7.1% (13/182) of patients with negative BCS specimen margins (defined as no tumor cells seen within 1 mm or less of inked edge of BCS specimen) had at least one re-resection margin containing additional disease. Thus, 54.2% (13/24) of patients with additional disease in a re-resection margin would not have been recognized by a standard BCS procedure alone (P < 0.001). The nine standardized resection margins represented only 26.8% of the volume of the BCS specimen and 32.6% of the surface area of the BCS specimen.</p> <p>Conclusion</p> <p>Our methodology accurately assesses the adequacy of surgical resection margins for determination of which individuals may need further resection to the affected breast in order to minimize the potential risk of local recurrence while attempting to limit the volume of additional breast tissue excised, as well as to determine which individuals are not realistically amendable to BCS and instead need a completion mastectomy to successfully remove multifocal disease.</p

    Rad51 and DNA-PKcs are involved in the generation of specific telomere aberrations induced by the quadruplex ligand 360A that impair mitotic cell progression and lead to cell death

    Get PDF
    Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death

    What is the value of orthodontic treatment?

    Get PDF
    Orthodontic treatment is as popular as ever. Orthodontists frequently have long lists of people wanting treatment and the cost to the NHS in England was £258m in 2010-2011 (approximately 10% of the NHS annual spend on dentistry). It is important that clinicians and healthcare commissioners constantly question the contribution of interventions towards improving the health of the population. In this article, the authors outline some of the evidence for and against the claims that people with a malocclusion are at a disadvantage compared with those without a malocclusion and that orthodontic treatment has significant health benefits. The authors would like to point out that this is not a comprehensive and systematic review of the entire scientific literature. Rather the evidence is presented in order to stimulate discussion and debate
    corecore