1,526 research outputs found

    Mechanical Stress Inference for Two Dimensional Cell Arrays

    Get PDF
    Many morphogenetic processes involve mechanical rearrangement of epithelial tissues that is driven by precisely regulated cytoskeletal forces and cell adhesion. The mechanical state of the cell and intercellular adhesion are not only the targets of regulation, but are themselves likely signals that coordinate developmental process. Yet, because it is difficult to directly measure mechanical stress {\it in vivo} on sub-cellular scale, little is understood about the role of mechanics of development. Here we present an alternative approach which takes advantage of the recent progress in live imaging of morphogenetic processes and uses computational analysis of high resolution images of epithelial tissues to infer relative magnitude of forces acting within and between cells. We model intracellular stress in terms of bulk pressure and interfacial tension, allowing these parameters to vary from cell to cell and from interface to interface. Assuming that epithelial cell layers are close to mechanical equilibrium, we use the observed geometry of the two dimensional cell array to infer interfacial tensions and intracellular pressures. Here we present the mathematical formulation of the proposed Mechanical Inverse method and apply it to the analysis of epithelial cell layers observed at the onset of ventral furrow formation in the {\it Drosophila} embryo and in the process of hair-cell determination in the avian cochlea. The analysis reveals mechanical anisotropy in the former process and mechanical heterogeneity, correlated with cell differentiation, in the latter process. The method opens a way for quantitative and detailed experimental tests of models of cell and tissue mechanics

    Impact of metabolic comorbidity on the association between body mass index and heatlh-related quality of life: a Scotland-wide cross-sectional study of 5,608 participants

    Get PDF
    <p/>Background: The prevalence of obesity is rising in Scotland and globally. Overall, obesity is associated with increased morbidity, mortality and reduced health-related quality of life. Studies suggest that "healthy obesity" (obesity without metabolic comorbidity) may not be associated with morbidity or mortality. Its impact on health-related quality of life is unknown. <p/>Methods: We extracted data from the Scottish Health Survey on self-reported health-related quality of life, body mass index (BMI), demographic information and comorbidity. SF-12 responses were converted into an overall health utility score. Linear regression analyses were used to explore the association between BMI and health utility, stratified by the presence or absence of metabolic comorbidity (diabetes, hypertension, hypercholesterolemia or cardiovascular disease), and adjusted for potential confounders (age, sex and deprivation quintile). <p/>Results: Of the 5,608 individuals, 3,744 (66.8%) were either overweight or obese and 921 (16.4%) had metabolic comorbidity. There was an inverted U-shaped relationship whereby health utility was highest among overweight individuals and fell with increasing BMI. There was a significant interaction with metabolic comorbidity (p = 0.007). Individuals with metabolic comorbidty had lower utility scores and a steeper decline in utility with increasing BMI (morbidly obese, adjusted coefficient: -0.064, 95% CI -0.115, -0.012, p = 0.015 for metabolic comorbidity versus -0.042, 95% CI -0.067, -0.018, p = 0.001 for no metabolic comorbidity). <p/>Conclusions: The adverse impact of obesity on health-related quality of life is greater among individuals with metabolic comorbidity. However, increased BMI is associated with reduced health-related quality of life even in the absence of metabolic comorbidity, casting doubt on the notion of "healthy obesity"

    Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression

    Get PDF
    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo

    Notch signaling in mouse blastocyst development and hatching

    Get PDF
    Research Areas: Developmental BiologyBackground: Mammalian early embryo development requires a well-orchestrated interplay of cell signaling pathways. Notch is a major regulatory pathway involved in cell-fate determination in embryonic and adult scenarios. However, the role of Notch in embryonic pre-implantation development is controversial. In particular, Notch role on blastocyst development and hatching remains elusive, and a complete picture of the transcription and expression patterns of Notch components during this time-period is not available. Results: This study provided a comprehensive view on the dynamics of individual embryo gene transcription and protein expression patterns of Notch components (receptors Notch1–4; ligands Dll1 and Dll4, Jagged1–2; and effectors Hes1–2), and their relationship with transcription of gene markers of pluripotency and differentiation (Sox2, Oct4, Klf4, Cdx2) during mouse blastocyst development and hatching. Transcription of Notch1–2, Jagged1–2 and Hes1 was highly prevalent and dynamic along stages of development, whereas transcription of Notch3–4, Dll4 and Hes2 had a low prevalence among embryos. Transcription levels of Notch1, Notch2, Jagged2 and Hes1 correlated with each other and with those of pluripotency and differentiation genes. Gene transcription was associated to protein expression, except for Jagged2, where high transcription levels in all embryos were not translated into protein. Presence of Notch signaling activity was confirmed through nuclear NICD and Hes1 detection, and downregulation of Hes1 transcription following canonical signaling blockade with DAPT. In vitro embryo culture supplementation with Jagged1 had no effect on embryo developmental kinetics. In contrast, supplementation with Jagged2 abolished Jagged1 transcription, downregulated Cdx2 transcription and inhibited blastocyst hatching. Notch signaling blockade by DAPT downregulated transcription of Sox2, and retarded embryo hatching. Conclusion: Transcription of Notch genes showed a dynamic pattern along blastocyst development and hatching. Data confirmed Notch signaling activity, and lead to the suggestion that Notch canonical signaling may be operating through Notch1, Notch3, Jagged1 and Hes1. Embryo culture supplementation with Jagged1 and Jagged2 unveiled a possible regulatory effect between Jagged1, Cdx2 and blastocyst hatching. Overall, results indicate that a deregulation in Notch signaling, either by its over or under-activation, affects blastocyst development and hatching.info:eu-repo/semantics/publishedVersio

    Influence of intense multidisciplinary follow-up and orlistat on weight reduction in a primary care setting

    Get PDF
    BACKGROUND: Obesity is the most common health problem in developed countries. Recently, several physicians' organizations have issued recommendations for treating obesity to family physicians, including instructions in nutrition, physical activity and medications. The aim of this study was to examine if effective weight-reducing treatment can be given by a family physician. It compares regular treatment with intensive treatment that include close follow-up and orlistat treatment. METHODS: The study was conducted in three primary care clinics. 225 patients were divided into three groups according to their choice. Group A received a personal diet with fortnightly meetings with the family physician and dietitian and orlistat treatment. Group B received a general diet, monthly meetings with the family physician only and orlistat treatment. Group C received a personal diet, monthly meetings with the dietitian only and no drug treatment. The primary endpoint was reduction of at least 5% of the initial weight during the study period. RESULTS: A greater percentage of patients in group A achieved their weight reduction goals than in other groups (51%, 13% and 9% in groups A, B and C, respectively, p < 0.001). There was a significant reduction in triglycerides in all groups, a significant reduction of low density lipids (LDL) in groups A and B and no significant difference in high density lipids (HDL) in any group. CONCLUSIONS: Significant weight reduction was obtained in a family physician setting. Further research is needed to evaluate if, by providing the family physician with the proper tools, similar success can be achieved in more clinics

    A Balance of BMP and Notch Activity Regulates Neurogenesis and Olfactory Nerve Formation

    Get PDF
    Although the function of the adult olfactory system has been thoroughly studied, the molecular mechanisms regulating the initial formation of the olfactory nerve, the first cranial nerve, remain poorly defined. Here, we provide evidence that both modulated Notch and bone morphogenetic protein (BMP) signaling affect the generation of neurons in the olfactory epithelium and reduce the number of migratory neurons, so called epithelioid cells. We show that this reduction of epithelial and migratory neurons is followed by a subsequent failure or complete absence of olfactory nerve formation. These data provide new insights into the early generation of neurons in the olfactory epithelium and the initial formation of the olfactory nerve tract. Our results present a novel mechanism in which BMP signals negatively affect Notch activity in a dominant manner in the olfactory epithelium, thereby regulating neurogenesis and explain why a balance of BMP and Notch activity is critical for the generation of neurons and proper development of the olfactory nerve

    Tone burst-evoked otoacoustic emissions in neonates: normative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tone-burst otoacoustic emissions (TBOAEs) have not been routinely studied in pediatric populations, although tone burst stimuli have greater frequency specificity compared with click sound stimuli. The present study aimed (1) to determine an appropriate stimulus level for neonatal TBOAE measurements when the stimulus center frequency was 1 kHz, (2) to explore the characteristics of 1 kHz TBOAEs in a neonatal population.</p> <p>Methods</p> <p>A total of 395 normal neonates (745 ears) were recruited. The study consisted of two parts, reflecting the two study aims. Part I included 40 normal neonatal ears, and TBOAE measurement was performed at five stimulus levels in the range 60–80 dB peSPL, with 5 dB incremental steps. Part II investigated the characteristics of the 1 kHz TBOAE response in a large group of 705 neonatal ears, and provided clinical reference criteria based on these characteristics.</p> <p>Results</p> <p>The study provided a series of reference parameters for 1 kHz TBOAE measurement in neonates. Based on the results, a suggested stimulus level and reference criteria for 1 kHz TBOAE measures with neonates were established. In addition, time-frequency analysis of the data gave new insight into the energy distribution of the neonatal TBOAE response.</p> <p>Conclusion</p> <p>TBOAE measures may be a useful method for investigating cochlear function at specific frequency ranges in neonates. However, further studies of both TBOAE time-frequency analysis and measurements in newborns are needed.</p

    Notch2 and Notch3 Function Together to Regulate Vascular Smooth Muscle Development

    Get PDF
    Notch signaling has been implicated in the regulation of smooth muscle differentiation, but the precise role of Notch receptors is ill defined. Although Notch3 receptor expression is high in smooth muscle, Notch3 mutant mice are viable and display only mild defects in vascular patterning and smooth muscle differentiation. Notch2 is also expressed in smooth muscle and Notch2 mutant mice show cardiovascular abnormalities indicative of smooth muscle defects. Together, these findings infer that Notch2 and Notch3 act together to govern vascular development and smooth muscle differentiation. To address this hypothesis, we characterized the phenotype of mice with a combined deficiency in Notch2 and Notch3. Our results show that when Notch2 and Notch3 genes are simultaneously disrupted, mice die in utero at mid-gestation due to severe vascular abnormalities. Assembly of the vascular network occurs normally as assessed by Pecam1 expression, however smooth muscle cells surrounding the vessels are grossly deficient leading to vascular collapse. In vitro analysis show that both Notch2 and Notch3 robustly activate smooth muscle differentiation genes, and Notch3, but not Notch2 is a target of Notch signaling. These data highlight the combined actions of the Notch receptors in the regulation of vascular development, and suggest that while these receptors exhibit compensatory roles in smooth muscle, their functions are not entirely overlapping
    corecore