75 research outputs found
K+-Dependent Na+/Ca2+ Exchanger Isoform 2, Nckx2, Takes Part in the Neuroprotection Elicited by Ischemic Preconditioning in Brain Ischemia
Sodium/Calcium exchangers are neuronal plasma membrane antiporters which, by coupling Ca2+ and Na+ fluxes across neuronal membranes, play a relevant role in brain ischemia. The most brain-expressed isoform among the members of the K+-dependent Na+/Ca2+ exchanger family, NCKX2, is involved in the progression of the ischemic lesion, since both its knocking-down and its knocking-out worsens ischemic damage. The aim of this study was to elucidate whether NCKX2 functions as an effector in the neuroprotection evoked by ischemic preconditioning. For this purpose, we investigated: (1) brain NCKX2 expression after preconditioning and preconditioning + ischemia; (2) the contribution of AKT and calpain to modulating NCKX2 expression during preconditioning; and (3) the effect of NCKX2 knocking-out on the neuroprotection mediated by ischemic preconditioning. Our results showed that NCKX2 expression increased in those brain regions protected by ischemic preconditioning. These changes were p-AKT-mediated since its inhibition prevented NCKX2 up-regulation. More interestingly, NCKX2 knocking-out significantly prevented the protection exerted by ischemic preconditioning. Overall, our results suggest that NCKX2 plays a fundamental role in the neuroprotective effect mediated by ischemic preconditioning and support the idea that the enhancement of its expression and activity might represent a reasonable strategy to reduce infarct extension after stroke
Models and methods for conditioning the ischemic brain
Abstract Background In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. Aims and Results The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. Conclusions The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell‐survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project
resveratrol treatment reduces the vulnerability of sh sy5y cells and cortical neurons overexpressing sod1 g93a to thimerosal toxicity through sirt1 dream pdyn pathway
Abstract In humans, mutation of glycine 93 to alanine of Cu++/Zn++ superoxide dismutase type-1 (SOD1-G93 A) has been associated to some familial cases of Amyotrophic Lateral Sclerosis (ALS). Several evidence proposed the involvement of environmental pollutants that like mercury could accelerate ALS symptoms. SH-SY5Y cells stably transfected with SOD1 and G93 A mutant of SOD1 constructs were exposed to non-toxic concentrations (0.01 μM) of ethylmercury thiosalicylate (thimerosal) for 24 h. Interestingly, we found that thimerosal, in SOD1-G93 A cells, but not in SOD1 cells, reduced cell survival. Furthermore, thimerosal-induced cell death occurred in a concentration dependent-manner and was prevented by the Sirtuin 1 (SIRT1) activator Resveratrol (RSV). Moreover, thimerosal decreased the protein expression of transcription factor Downstream Regulatory Element Antagonist Modulator (DREAM), but not DREAM gene. Interestingly, DREAM reduction was blocked by co-treatment with RSV, suggesting the participation of SIRT1 in determining this effect. Immunoprecipitation experiments in SOD1-G93 A cells exposed to thimerosal demonstrated that RSV increased DREAM deacetylation and reduced its polyubiquitination. In addition, RSV counteracted thimerosal-enhanced prodynorphin (PDYN) mRNA, a DREAM target gene. Furthermore, cortical neurons transiently transfected with SOD1-G93 A construct and exposed to thimerosal (0.5 μM/24 h) showed a reduction of DREAM and an up-regulation of the prodynorphin gene. Importantly, both the treatment with RSV or the transfection of siRNA against prodynorphin significantly reduced thimerosal-induced neurotoxicity, while DREAM knocking-down potentiated thimerosal-reduced cell survival. These results demonstrate the particular vulnerability of SOD1-G93 A neuronal cells to thimerosal and that RSV via SIRT1 counteracts the neurodetrimental effect of this toxicant by preventing DREAM reduction and prodynorphin up-regulation
Methylmercury upregulates RE-1 silencing transcription factor (REST) in SH-SY5Y cells and mouse cerebellum
Methylmercury (MeHg) is a highly neurotoxic compound that, in adequate doses, can cause damage to the brain, including developmental defects and in severe cases cell death. The RE-1-silencing transcription factor (REST) has been found to be involved in the neurotoxic effects of environmental pollutants such as polychlorinated biphenyls (PCBs). In this study, we investigated the effects of MeHg treatment on REST expression and its role in MeHg-induced neurotoxicity in neuroblastoma SH-SY5Y cells. We found that MeHg exposure caused a dose- and time- dependent apoptotic cell death, as evidenced by the appearance of apoptotic hallmarks including caspase-3 processing and annexin V uptake. Moreover, MeHg increased REST gene and gene product expression. MeHg-induced apoptotic cell death was completely abolished by REST knockdown. Interestingly, MeHg (1. μM/24. h) increased the expression of REST Corepressor (Co-REST) and its binding with REST whereas the other REST cofactor mammalian SIN3 homolog A transcription regulator (mSin3A) was not modified. In addition, we demonstrated that the acetylation of histone protein H4 was reduced after MeHg treatment and was critical for MeHg-induced apoptosis. Accordingly, the pan-histone deacetylase inhibitor trichostatin-A (TSA) prevented MeHg-induced histone protein H4 deacetylation, thereby reverting MeHg-induced neurotoxic effect. Male mice subcutaneously injected with 10 mg/kg of MeHg for 10 days showed an increase in REST expression in the granule cell layer of the cerebellum together with a decrease in histone H4 acetylation. Collectively, we demonstrated that methylmercury exposure can cause neurotoxicity by activating REST gene expression and H4 deacetylation
Emerging Role of DREAM in Healthy Brain and Neurological Diseases
: The downstream regulatory element antagonist modulator (DREAM) is a multifunctional Ca2+-sensitive protein exerting a dual mechanism of action to regulate several Ca2+-dependent processes. Upon sumoylation, DREAM enters in nucleus where it downregulates the expression of several genes provided with a consensus sequence named dream regulatory element (DRE). On the other hand, DREAM could also directly modulate the activity or the localization of several cytosolic and plasma membrane proteins. In this review, we summarize recent advances in the knowledge of DREAM dysregulation and DREAM-dependent epigenetic remodeling as a central mechanism in the progression of several diseases affecting central nervous system, including stroke, Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and neuropathic pain. Interestingly, DREAM seems to exert a common detrimental role in these diseases by inhibiting the transcription of several neuroprotective genes, including the sodium/calcium exchanger isoform 3 (NCX3), brain-derived neurotrophic factor (BDNF), pro-dynorphin, and c-fos. These findings lead to the concept that DREAM might represent a pharmacological target to ameliorate symptoms and reduce neurodegenerative processes in several pathological conditions affecting central nervous system
The Na+/Ca2+ Exchanger: A Target for Therapeutic Intervention in Cerebral Ischemia
Full color throughout
Ischemic brain damage represents a major source of morbidity and mortality in westernized society and poses a significant financial burden on the health care system. To date, few effective therapies have been realized to treat stroke and promising avenues have not proven clinically useful. Recent evidence, however, suggests that channels, pumps, and ionic exchangers are involved in CNS ischemia and ischemic stroke, but the potential contribution of these channels for curing stroke is far less understood than for many other normal and pathological conditions. New Strategies in Stroke Intervention: Ionic Channels, Pumps, and Transporters analyzes the roles played by targets in stroke development and the potential action of drugs modulating these proteins. This book provides a groundbreaking review of these ionic channels, pumps, and transporters as regulators of neuronal ionic homeostasis, providing a better understanding of ischemic brain disorders and the new pharmacological avenues for a cure. It will be a useful tool for researchers working in this field, and any student interested in the physiological, pathophysiological, and pharmacological features of stroke damage
Fyn Tyrosine Kinase Elicits Amyloid Precursor Protein Tyr682 Phosphorylation in Neurons from Alzheimer's Disease Patients
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder with a few early detection strategies. We previously proposed the amyloid precursor protein (APP) tyrosine 682 (Tyr682) residue as a valuable target for the development of new innovative pharmacologic or diagnostic interventions in AD. Indeed, when APP is phosphorylated at Tyr682, it is forced into acidic neuronal compartments where it is processed to generate neurotoxic amyloid β peptides. Of interest, Fyn tyrosine kinase (TK) interaction with APP Tyr682 residue increases in AD neurons. Here we proved that when Fyn TK was overexpressed it elicited APP Tyr682 phosphorylation in neurons from healthy donors and promoted the amyloidogenic APP processing with Aβ peptides accumulation and neuronal death. Phosphorylation of APP at Tyr (pAPP-Tyr) increased in neurons of AD patients and AD neurons that exhibited high pAPP-Tyr also had higher Fyn TK activity. Fyn TK inhibition abolished the pAPP-Tyr and reduced Aβ42 secretion in AD neurons. In addition, the multidomain adaptor protein Fe65 controlled the Fyn-mediated pAPP-Tyr, warranting the possibility of targeting the Fe65-APP-Fyn pathway to develop innovative strategies in AD. Altogether, these results strongly emphasize the relevance of focusing on pAPP Tyr682 either for diagnostic purposes, as an early biomarker of the disease, or for pharmacological targeting, using Fyn TKI
- …