41 research outputs found

    Consensus recommendations for the use of automated insulin delivery technologies in clinical practice

    Get PDF
    The significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers, and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past 6 years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems

    Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec–Newfoundland, Canada

    No full text
    The siliciclastic Wishart Formation of the Early Proterozic Labrador trough is high-energy shelf deposit. Wishart sandstones contain both interstitial chert with textures of void-filling cement and thin chert intercalations contaminated with siliciclastic mud. Although volumetrically minor, these cherts occur in several thin, areally extensive stratigraphic mud. Although volumetrically minor, these cherts occur in several thin, areally extensive stratigraphic intervals. The Wishart contains intraclasts of both the chertcemented sandstone and the impure chert layers (as well as several other types of chert sand and gravel). This suggests the cherts formed penecontemporaneously, which is consistent with the absence of any signs of replacement in all but one of the chert types and the clear-cut distinctions between chert types, even where they are side by side in a single thin section. The origin which appears to be most compatible with available evidence is that the cherts represent silica precipitated from thermal waters that rose through the sediments of the Wishart shelf and discharged precipitated from thermal waters that rose through the sediments of the Wishart shelf and discharged into suprajacent seawater. A biogenic origin is unlikely in view of the lack of appropriate organisms during the Early Proterozic and the rapidity with which the cements formed. A volcanogenic origin is likely because volcaniclastic tezxtures are plentiful in associated formations but absent from the Wishart. Precipitation induced by evaporative concentration in unlikely in view of the widespread evidence of tidal currents and the lack of evidence of desiccation in the Wishart. Finally, the cherts are not restricted to the lowest-energy faces, and therefore they presumably did not accumulate as a background sediment. Deposition of silica above the sediment/water interface was probably made possible by ambient concentrations of silica that were significantly higher than those of Phancrozoic seawater. Cherts with similar textures occur in other Early Proterozoic sediments, most notably arenitic or granular iron-formations
    corecore