361 research outputs found

    Charge density functional plus UU calculation of lacunar spinel GaM4_4Se8_8 (M = Nb, Mo, Ta, and W)

    Full text link
    Charge density functional plus UU calculations are carried out to examine the validity of molecular JeffJ_\text{eff}=1/2 and 3/2 state in lacunar spinel GaM4_4X8_8 (M = Nb, Mo, Ta, and W). With LDA (spin-unpolarized local density approximation)+U+U, which has recently been suggested as the more desirable choice than LSDA (local spin density approximation)+U+U, we examine the band structure in comparison with the previous prediction based on the spin-polarized version of functional and with the prototypical JeffJ_\text{eff}=1/2 material Sr2_2IrO4_4. It is found that the previously suggested JeffJ_\text{eff}=1/2 and 3/2 band characters remain valid still in LDA+U+U calculations while the use of charge-only density causes some minor differences. Our result provides the further support for the novel molecular JeffJ_\text{eff} state in this series of materials, which can hopefully motivate the future exploration toward its verification and the further search for new functionalities

    Editorial: clock/frequency generation circuits and systems

    Get PDF
    1 Institute of Microelectronics, Tsinghua University, Beijing 100084, China 2Department of Electronics, University of Pavia, 27100 Pavia, Italy 3Department of Electrical Engineering, Pohang University of Science and Technology, Kyungbuk 790-784, Republic of Korea 4Department of Physical Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan 5Electrical Engineering Department, University of California, Los Angeles, CA 90095, US

    Clock/Frequency Generation Circuits and Systems

    Get PDF
    1 Institute of Microelectronics, Tsinghua University, Beijing 100084, China 2Department of Electronics, University of Pavia, 27100 Pavia, Italy 3Department of Electrical Engineering, Pohang University of Science and Technology, Kyungbuk 790-784, Republic of Korea 4Department of Physical Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan 5Electrical Engineering Department, University of California, Los Angeles, CA 90095, US

    A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting

    Get PDF
    Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid-solid and solid-liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.11Ysciescopu

    Ion trap with gold-plated alumina: substrate and surface characterization

    Full text link
    We describe a complete development process of a segmented-blade linear ion trap. Alumina substrate is characterized with an X-ray diffraction and loss-tangent measurement. The blade is laser-micromachined and polished, followed by the sputtering and gold electroplating. Surface roughness is examined at each step of the fabrication via both electron and optical microscopies. On the gold-plated facet, we obtain a height deviation of tens of nanometers in the vicinity of the ion position. Trapping of laser-cooled 174^{174}Yb+^{+} ions is demonstrated.Comment: 7 pages, 6 figure

    Contrast enhancement behavior of hydrogen silsesquioxane in a salty developer

    Get PDF
    The authors investigated a contrast enhancement behavior of hydrogen silsesquioxane (HSQ) in a salty development system (NaOH/NaCl). Time-resolved analysis of contrast curves and line-grating patterns were carried out to investigate the unique properties of a salty development process. In NaOH developer without salt, the development process was saturated beyond a certain development time. On the other hand, the addition of salt enabled a continuous development, which was not observed in the pure NaOH development. The continuous thinning process enhances the contrast of HSQ in the salty developer, which allows a fast collapsing behavior in HSQ line-grating patterns. During development process, salt seems to have the role of modifying HSQ by breaking network bonds preferentially, leading to a continuous development rate
    corecore