33,496 research outputs found

    The ion motion in self-modulated plasma wakefield accelerators

    Get PDF
    The effects of plasma ion motion in self-modulated plasma based accelerators is examined. An analytical model describing ion motion in the narrow beam limit is developed, and confirmed through multi-dimensional particle-in-cell simulations. It is shown that the ion motion can lead to the early saturation of the self-modulation instability, and to the suppression of the accelerating gradients. This can reduce the total energy that can be transformed into kinetic energy of accelerated particles. For the parameters of future proton-driven plasma accelerator experiments, the ion dynamics can have a strong impact. Possible methods to mitigate the effects of the ion motion in future experiments are demonstrated.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Xe films on a decagonal Al-Ni-Co quasicrystal surface

    Full text link
    The grand canonical Monte Carlo method is employed to study the adsorption of Xe on a quasicrystalline Al-Ni-Co surface. The calculation uses a semiempirical gas-surface interaction, based on conventional combining rules and the usual Lennard-Jones Xe-Xe interaction. The resulting adsorption isotherms and calculated structures are consistent with the results of LEED experimental data. In this paper we focus on five features not discussed earlier (Phys. Rev. Lett. 95, 136104 (2005)): the range of the average density of the adsorbate, the order of the transition, the orientational degeneracy of the ground state, the isosteric heat of adsorption of the system, and the effect of the vertical cell dimension.Comment: 6 pages, 5 pic

    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen

    Get PDF
    A new variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaussians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented.Comment: 26 pages, 13 figures. submitted to Phys. Rev. E, October 199

    (Meta-)stability and Core–Shell Dynamics of Gold Nanoclusters at Finite Temperature

    Get PDF
    Gold nanoclusters have been the focus of numerous computational studies, but an atomistic understanding of their structural and dynamical properties at finite temperature is far from satisfactory. To address this deficiency, we investigate gold nanoclusters via ab initio molecular dynamics, in a range of sizes where a core–shell morphology is observed. We analyze their structure and dynamics using state-of-the-art techniques, including unsupervised machine-learning nonlinear dimensionality reduction (sketch-map) for describing the similarities and differences among the range of sampled configurations. In the examined temperature range between 300 and 600 K, we find that whereas the gold nanoclusters exhibit continuous structural rearrangement, they are not amorphous. Instead, they clearly show persistent motifs: a cationic core of 1–5 atoms is loosely bound to a shell which typically displays a substructure resulting from the competition between locally spherical versus planar fragments. Besides illuminating the properties of core–shell gold nanoclusters, the present study proposes a set of useful tools for understanding their nature in operando

    Theory of Scanning Tunneling Spectroscopy of a Magnetic Adatom on a Metallic Surface

    Full text link
    A comprehensive theory is presented for the voltage, temperature, and spatial dependence of the tunneling current between a scanning tunneling microscope (STM) tip and a metallic surface with an individual magnetic adatom. Modeling the adatom by a nondegenerate Anderson impurity, a general expression is derived for a weak tunneling current in terms of the dressed impurity Green function, the impurity-free surface Green function, and the tunneling matrix elements. This generalizes Fano's analysis to the interacting case. The differential-conductance lineshapes seen in recent STM experiments with the tip directly over the magnetic adatom are reproduced within our model, as is the rapid decay, \sim 10\AA, of the low-bias structure as one moves the tip away from the adatom. With our simple model for the electronic structure of the surface, there is no dip in the differential conductance at approximately one lattice spacing from the magnetic adatom, but rather we see a resonant enhancement. The formalism for tunneling into small clusters of magnetic adatoms is developed.Comment: 12 pages, 9 figures; to appear in Phys. Rev.

    Luttinger liquid superlattices

    Full text link
    We calculate the correlation functions and the DC conductivity of Luttinger liquid superlattices, modeled by a repeated pattern of interacting and free Luttinger liquids. In a specific realization, where the interacting subsystem is a Hubbard chain, the system exhibits a rich phase diagram with four different phases: two metals and two compressible insulators. In general, we find that the effective low energy description amalgamates features of both types of liquids in proportion to their spatial extent, suggesting the interesting possibility of `engineered' Luttinger liquids.Comment: RevTeX, 5 pages, 3 figure

    Self-similar and charged spheres in the diffusion approximation

    Full text link
    We study spherical, charged and self--similar distributions of matter in the diffusion approximation. We propose a simple, dynamic but physically meaningful solution. For such a solution we obtain a model in which the distribution becomes static and changes to dust. The collapse is halted with damped mass oscillations about the absolute value of the total charge.Comment: 15 pages, 7 figure

    The Equation of State and the Hugoniot of Laser Shock-Compressed Deuterium

    Full text link
    The equation of state and the shock Hugoniot of deuterium are calculated using a first-principles approach, for the conditions of the recent shock experiments. We use density functional theory within a classical mapping of the quantum fluids [ Phys. Rev. Letters, {\bf 84}, 959 (2000) ]. The calculated Hugoniot is close to the Path-Integral Monte Carlo (PIMC) result. We also consider the {\it quasi-equilibrium} two-temperature case where the Deuterons are hotter than the electrons; the resulting quasi-equilibrium Hugoniot mimics the laser-shock data. The increased compressibility arises from hot D+eD^+-e pairs occuring close to the zero of the electron chemical potential.Comment: Four pages; One Revtex manuscript, two postscipt figures; submitted to PR
    corecore