51,760 research outputs found
Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator
The transverse self-modulation of ultra-relativistic, long lepton bunches in
high-density plasmas is explored through full-scale particle-in-cell
simulations. We demonstrate that long SLAC-type electron and positron bunches
can become strongly self-modulated over centimeter distances, leading to wake
excitation in the blowout regime with accelerating fields in excess of 20 GV/m.
We show that particles energy variations exceeding 10 GeV can occur in
meter-long plasmas. We find that the self-modulation of positively and
negatively charged bunches differ when the blowout is reached. Seeding the
self-modulation instability suppresses the competing hosing instability. This
work reveals that a proof-of-principle experiment to test the physics of bunch
self-modulation can be performed with available lepton bunches and with
existing experimental apparatus and diagnostics.Comment: 8 pages, 8 figures, accepted for publication in Physics of Plasma
Ion motion in the wake driven by long particle bunches in plasmas
We explore the role of the background plasma ion motion in self-modulated
plasma wakefield accelerators. We employ J. Dawson's plasma sheet model to
derive expressions for the transverse plasma electric field and ponderomotive
force in the narrow bunch limit. We use these results to determine the on-set
of the ion dynamics, and demonstrate that the ion motion could occur in
self-modulated plasma wakefield accelerators. Simulations show the motion of
the plasma ions can lead to the early suppression of the self-modulation
instability and of the accelerating fields. The background plasma ion motion
can nevertheless be fully mitigated by using plasmas with heavier plasmas.Comment: 23 pages, 6 figure
Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc
The early science results from the new generation of high-resolution stellar
spectroscopic surveys, such as GALAH and the Gaia-ESO survey, will represent
major milestones in the quest to chemically tag the Galaxy. Yet this technique
to reconstruct dispersed coeval stellar groups has remained largely untested
until recently. We build on previous work that developed an empirical chemical
tagging probability function, which describes the likelihood that two field
stars are conatal, that is, they were formed in the same cluster environment.
In this work we perform the first ever blind chemical tagging experiment, i.e.,
tagging stars with no known or otherwise discernable associations, on a sample
of 714 disc field stars with a number of high quality high resolution
homogeneous metal abundance measurements. We present evidence that chemical
tagging of field stars does identify coeval groups of stars, yet these groups
may not represent distinct formation sites, e.g. as in dissolved open clusters,
as previously thought. Our results point to several important conclusions,
among them that group finding will be limited strictly to chemical abundance
space, e.g. stellar ages, kinematics, colors, temperature and surface gravity
do not enhance the detectability of groups. We also demonstrate that in
addition to its role in probing the chemical enrichment and kinematic history
of the Galactic disc, chemical tagging represents a powerful new stellar age
determination technique.Comment: 12 pages, 9 figures, accepted for publication in Monthly Notices of
the Royal Astronomical Society (MNRAS
Ion dynamics and acceleration in relativistic shocks
Ab-initio numerical study of collisionless shocks in electron-ion
unmagnetized plasmas is performed with fully relativistic particle in cell
simulations. The main properties of the shock are shown, focusing on the
implications for particle acceleration. Results from previous works with a
distinct numerical framework are recovered, including the shock structure and
the overall acceleration features. Particle tracking is then used to analyze in
detail the particle dynamics and the acceleration process. We observe an energy
growth in time that can be reproduced by a Fermi-like mechanism with a reduced
number of scatterings, in which the time between collisions increases as the
particle gains energy, and the average acceleration efficiency is not ideal.
The in depth analysis of the underlying physics is relevant to understand the
generation of high energy cosmic rays, the impact on the astrophysical shock
dynamics, and the consequent emission of radiation.Comment: 5 pages, 3 figure
Magnetically assisted self-injection and radiation generation for plasma based acceleration
It is shown through analytical modeling and numerical simulations that
external magnetic fields can relax the self-trapping thresholds in plasma based
accelerators. In addition, the transverse location where self-trapping occurs
can be selected by adequate choice of the spatial profile of the external
magnetic field. We also find that magnetic-field assisted self-injection can
lead to the emission of betatron radiation at well defined frequencies. This
controlled injection technique could be explored using state-of-the-art
magnetic fields in current/next generation plasma/laser wakefield accelerator
experiments.Comment: 7 pages, 4 figures, accepted for publication in Plasma Physics and
Controlled Fusio
Magnetic monopole and string excitations in a two-dimensional spin ice
We study the magnetic excitations of a square lattice spin-ice recently
produced in an artificial form, as an array of nanoscale magnets. Our analysis,
based upon the dipolar interaction between the nanomagnetic islands, correctly
reproduces the ground-state observed experimentally. In addition, we find
magnetic monopole-like excitations effectively interacting by means of the
usual Coulombic plus a linear confining potential, the latter being related to
a string-like excitation binding the monopoles pairs, what indicates that the
fractionalization of magnetic dipoles may not be so easy in two dimensions.
These findings contrast this material with the three-dimensional analogue,
where such monopoles experience only the Coulombic interaction. We discuss,
however, two entropic effects that affect the monopole interactions: firstly,
the string configurational entropy may loose the string tension and then, free
magnetic monopoles should also be found in lower dimensional spin ices;
secondly, in contrast to the string configurational entropy, an entropically
driven Coulomb force, which increases with temperature, has the opposite effect
of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009
On the Levi-Civita solutions with cosmological constant
The main properties of the Levi-Civita solutions with the cosmological
constant are studied. In particular, it is found that some of the solutions
need to be extended beyond certain hypersurfaces in order to have geodesically
complete spacetimes. Some extensions are considered and found to give rise to
black hole structure but with plane symmetry. All the spacetimes that are not
geodesically complete are Petrov type D, while in general the spacetimes are
Petrov type I.Comment: Typed in Revtex, including two figures. To appear in Phys. Rev.
- …