351 research outputs found

    Systemic Effect of Angipars on Regulation of Wound Healing is Mediated by CXC in Diabetes

    Get PDF
    Purpose: To measure CXCL10 as angiostatic, and CXCL1, CXCL12 as angiogenic chemokines in the tissues of wounds of diabetics following treatment with insulin, angipars (a herbal Iranian drug) and a combination of angipars and insulin.Methods: Forty eight male Wistar rats weighing 200 - 250 g were used. The induction of diabetes was carried out with 50 mg/kg of STZ (streptozotocin). Approximately, 56 days following the induction of diabetes, the rats were injured to establish wound lesion. They were divided into four main groups: nondiabetic control group (received only saline), diabetes group without treatment (received only saline), diabetes group which received insulin (reference) as treatment, and diabetes group which received both insulin and angipars. After 12 days of treatment, the animals were subjected to blood sampling from retro-orbital vein and CXC chemokines were analyzed by Western blotting.Results: The results show that the concentration of CXC10 decreased from 95 pg/ml in the diabetic control group to 40 and 10 pg/ml in the insulin and combined angipars/insulin groups, respectively (p ≤ 0.05). However, CXCL12 concentration was not changed among the various groups compared to the control group. In diabetic control and angipars-insulin groups, CXCL1 level (pg/ml) was 98 and 50, respectively, thus indicating that expression of CXCL1 chemokine decreased significantly (p ≤ 0.05).Conclusions: Angipars, due probably to its richness in some natural compounds such as coumarin and flavonoids (which are antioxidants), mediates chemokines expression and may be effective in the regulation of angiogenesis and inflammation via balancing of chemokines expression.Keywords: Diabetes mellitus, Angipars, Insulin, Chemokine, Angiostatic, Angiogeni

    Towards high-speed optical quantum memories

    Full text link
    Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers and quantum communications. So far, quantum memories have operated with bandwidths that limit data rates to MHz. Here we report the coherent storage and retrieval of sub-nanosecond low intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium vapor. The novel memory interaction takes place via a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field. This allows for an increase in data rates by a factor of almost 1000 compared to existing quantum memories. The memory works with a total efficiency of 15% and its coherence is demonstrated by directly interfering the stored and retrieved pulses. Coherence times in hot atomic vapors are on the order of microsecond - the expected storage time limit for this memory.Comment: 13 pages, 5 figure

    Narrowband Biphotons: Generation, Manipulation, and Applications

    Full text link
    In this chapter, we review recent advances in generating narrowband biphotons with long coherence time using spontaneous parametric interaction in monolithic cavity with cluster effect as well as in cold atoms with electromagnetically induced transparency. Engineering and manipulating the temporal waveforms of these long biphotons provide efficient means for controlling light-matter quantum interaction at the single-photon level. We also review recent experiments using temporally long biphotons and single photons.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Effects of exercise intensity and nutrition advice on myocardial function in obese children and adolescents: a multicentre randomised controlled trial study protocol.

    Get PDF
    INTRODUCTION: The prevalence of paediatric obesity is increasing, and with it, lifestyle-related diseases in children and adolescents. High-intensity interval training (HIIT) has recently been explored as an alternate to traditional moderate-intensity continuous training (MICT) in adults with chronic disease and has been shown to induce a rapid reversal of subclinical disease markers in obese children and adolescents. The primary aim of this study is to compare the effects of HIIT with MICT on myocardial function in obese children and adolescents. METHODS AND ANALYSIS: Multicentre randomised controlled trial of 100 obese children and adolescents in the cities of Trondheim (Norway) and Brisbane (Australia). The trial will examine the efficacy of HIIT to improve cardiometabolic outcomes in obese children and adolescents. Participants will be randomised to (1) HIIT and nutrition advice, (2) MICT and nutrition advice or (3) nutrition advice. Participants will partake in supervised exercise training and/or nutrition sessions for 3 months. Measurements for study end points will occur at baseline, 3 months (postintervention) and 12 months (follow-up). The primary end point is myocardial function (peak systolic tissue velocity). Secondary end points include vascular function (flow-mediated dilation assessment), quantity of visceral and subcutaneous adipose tissue, myocardial structure and function, body composition, cardiorespiratory fitness, autonomic function, blood biochemistry, physical activity and nutrition. Lean, healthy children and adolescents will complete measurements for all study end points at one time point for comparative cross-sectional analyses. ETHICS AND DISSEMINATION: This randomised controlled trial will generate substantial information regarding the effects of exercise intensity on paediatric obesity, specifically the cardiometabolic health of this at-risk population. It is expected that communication of results will allow for the development of more effective evidence-based exercise prescription guidelines in this population while investigating the benefits of HIIT on subclinical markers of disease. TRIAL REGISTRATION NUMBER: NCT01991106

    Comparable endocrine and neuromuscular adaptations to variable vs. constant gravity-dependent resistance training among young women.

    Get PDF
    BACKGROUND:Variable resistance has been shown to induce greater total work and muscle activation when compared to constant resistance. However, little is known regarding the effects of chronic exposure to variable resistance training in comparison with constant resistance training. The aim of the present study was therefore to examine the effects of chain-loaded variable and constant gravity-dependent resistance training on resting hormonal and neuromuscular adaptations. METHODS:Young women were randomly assigned to variable resistance training (VRT; n = 12; age, 23.75 ± 3.64 years; and BMI, 26.80 ± 4.21 kg m-2), constant resistance training (CRT; n = 12; age, 23.58 ± 3.84 years; BMI, 25.25 ± 3.84 kg m-2), or control (Con; n = 12; age, 23.50 ± 2.93 years; BMI, 27.12 ± 12 kg m-2) groups. CRT performed 8-week total-body free-weight training three times per week with moderate-to-high intensity (65-80% 1RM; periodized). VRT was the same as CRT but included variable resistance via chains (15% of total load). Resting serum samples were taken before and after the 8-week intervention for GH, IGF-1, cortisol, myostatin, and follistatin analyses. RESULTS:Both VRT and CRT groups displayed moderate-to-large significant increases in GH (197.1%; ES = 0.78 vs. 229.9%; ES = 1.55), IGF-1 (82.3%; ES = 1.87 vs. 66%; ES = 1.66), and follistatin (58.8%; ES = 0.80 vs. 49.15%; ES = 0.80) and decreases in cortisol (- 19.9%; ES = - 1.34 vs. - 17.1%; ES = - 1.05) and myostatin (- 26.9%; ES = - 0.78 vs. - 23.2%; ES = - 0.82). Also, VRT and CRT resulted in large significant increases in bench press (30.54%; ES = 1.45 vs. 25.08%; ES = 1.12) and squat (30.63%; ES = 1.28 vs. 24.81%; ES = 1.21) strength, with no differences between groups. CONCLUSIONS:Implementing chain-loaded VRT into a periodized resistance training program can be an effective alternative to constant loading during free-weight RT among untrained young women

    Transcriptome Responses of Insect Fat Body Cells to Tissue Culture Environment

    Get PDF
    Tissue culture is performed to maintain isolated portions of multicellular organisms in an artificial milieu that is outside the individual organism and for considerable periods of time; cells derived from cultured explants are, in general, different from cells of the corresponding tissue in a living organism. The changes in cultured tissues that precede and often explain the subsequent cell proliferation of explant-derived cells have been partially studied, but little is known about the molecular and genomic basis of these changes. Comparative transcriptomics of intact and cultured (90 hours in MGM-450 insect medium) Bombyx mori tissues revealed that fewer genes represented a larger portion of the transcriptome of intact fat body tissues than of cultured fat body tissues. This analysis also indicated that expression of genes encoding sugar transporters and immune response proteins increased during culture and that expression of genes encoding lipoproteins and cuticle proteins decreased during culture. These results provide support for hypotheses that cultured tissues respond immunologically to surgery, adapt to the medium by accelerating sugar uptake, and terminate their identity as part of an intact organism by becoming independent of that organism

    Traumatic bone cyst of the mandible of possible iatrogenic origin: a case report and brief review of the literature

    Get PDF
    The traumatic bone cyst (TBC) is an uncommon nonepithelial lined cavity of the jaws. The lesion is mainly diagnosed in young patients most frequently during the second decade of life. The majority of TBCs are located in the mandibular body between the canine and the third molar. Clinically, the lesion is asymptomatic in the majority of cases and is often accidentally discovered on routine radiological examination usually as an unilocular radiolucent area with a "scalloping effect". The definite diagnosis of traumatic cyst is invariably achieved at surgery. Since material for histologic examination may be scant or non-existent, it is very often difficult for a definite histologic diagnosis to be achieved. We present a well documented radiographically and histopathologically atypical case of TBC involving the ramus of the mandible, which is also of possible iatrogenic origin. The literature is briefly reviewed

    The PPCD1 Mouse: Characterization of a Mouse Model for Posterior Polymorphous Corneal Dystrophy and Identification of a Candidate Gene

    Get PDF
    The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD) and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the “mouse PPCD1” phenotype and mapped the mouse locus for this phenotype, designated “Ppcd1”, to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bptm1a(KOMP)Wtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD
    corecore