1,267 research outputs found

    Demonstration that a lectin-like receptor (gp90MEL) directly mediates adhesion of lymphocytes to high endothelial venules of lymph nodes.

    Get PDF
    Lymphocyte migration from the blood into most secondary lymphoid organs is initiated by a highly selective adhesive interaction with the endothelium of specialized blood vessels known as high endothelial venules (HEV). The propensity of lymphocytes to migrate to particular lymphoid organs is known as lymphocyte homing, and the receptors on lymphocytes that dictate interactions with HEV at particular anatomical sites are designated "homing receptors". Based upon antibody blockade experiments and cell-type distribution studies, a prominent candidate for the peripheral lymph node homing receptor in mouse is the approximately 90-kD cell surface glycoprotein (gp90MEL) recognized by the monoclonal antibody MEL-14. Previous work, including sequencing of a cDNA encoding for this molecule, supports the possibility that gp90MEL is a calcium-dependent lectin-like receptor. Here, we show that immunoaffinity-purified gp90MEL interacts in a sugar-inhibitable manner with sites on peripheral lymph node HEV and prevents attachment of lymphocytes. Lymphocyte attachment to HEV in Peyer's patches, a gut-associated lymphoid organ, is not affected by gp90MEL. The results demonstrate that gp90MEL, as a lectin-like receptor, directly bridges lymphocytes to the endothelium

    Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody.

    Get PDF
    L-selectin is a lectin-like receptor that mediates the attachment of lymphocytes to high endothelial venules (HEV) of lymph nodes during the process of lymphocyte recirculation. Two sulfated, mucin-like glycoproteins known as Sgp50/GlyCAM-1 and Sgp90/CD34 have previously been identified as HEV-associated ligands for L-selectin. These proteins were originally detected with an L-selectin/Ig chimera called LEC-IgG. GlyCAM-1 and CD34 are also recognized by an antiperipheral node addressin (PNAd) mAb called MECA 79, which blocks L-selectin-dependent adhesion and selectively stains lymph node HEV. The present study compares the requirements for the binding of MECA 79 and LEC-IgG to HEV-ligands. Whereas desialylation of GlyCAM-1 and CD34 drastically reduced binding to LEC-IgG, this treatment enhanced the binding of GlyCAM-1 to MECA 79. In contrast, the binding of both MECA 79 and LEC-IgG to GlyCAM-1 and CD34 was greatly decreased when the sulfation of these ligands was reduced with chlorate, a metabolic inhibitor of sulfation. Because MECA 79 stains HEV-like vessels at various sites of inflammation, recognition by L-selectin of ligands outside of secondary lymphoid organs may depend on sulfation. In addition to their reactivity with GlyCAM-1 and CD34, both MECA 79 and LEC-IgG recognize an independent molecule of approximately 200 kD in a sulfate-dependent manner. Thus, this molecule, which we designate Sgp200, is an additional ligand for L-selectin

    Phosphomannosyl receptors may participate in the adhesive interaction between lymphocytes and high endothelial venules.

    Get PDF
    Normal and malignant lymphocytes can migrate from the bloodstream into lymph nodes and Peyer's patches. This process helps distribute normal lymphocytes throughout the lymphoid system and may provide a portal of entry for circulating malignant cells. An adhesive interaction between lymphocytes and the endothelium of postcapillary venules is the first step in the migratory process. We have recently shown that the simple sugars L-fucose and D-mannose, and an L-fucose-rich polysaccharide (fucoidin), can inhibit this adhesive interaction in vitro. We now report that mannose-6-phosphate, the structurally related sugar fructose-1-phosphate, and a phosphomannan, core polysaccharide from the yeast Hansenula holstii (PPME) are also potent inhibitors. Inhibitory activity was assessed by incubating freshly prepared suspensions of lymphocytes, containing the various additives, over air-dried, frozen sections of syngeneic lymph nodes at 7-10 degrees C. Sections were then evaluated in the light microscope for the binding of lymphocytes to postcapillary venules. Mannose-6-phosphate and fructose-1-phosphate were potent inhibitors of lymphocyte attachment (one-half maximal inhibition at 2-3 mM). Mannose-1-phosphate and fructose-6-phosphate had slight inhibitory activity, while glucose-1-phosphate, glucose-6-phosphate, galactose-1-phosphate, and galactose-6-phosphate had no significant activity (at 10 mM). In addition, the phosphomannan core polysaccharide was a potent inhibitor (one-half maximal inhibition at 10-20 micrograms/ml); dephosphorylation with alkaline phosphatase resulted in loss of its inhibitory activity. Preincubation of the lymphocytes, but not the lymph node frozen sections, with PPME resulted in persistent inhibition of binding. Neither the monosaccharides nor the polysaccharide suppressed protein synthesis nor decreased the viability of the lymphocytes. Furthermore, inhibitory activity did not correlate with an increase in negative charge on the lymphocyte surface (as measured by cellular electrophoresis). These data suggest that a carbohydrate-binding molecule on the lymphocyte surface, with specificity for mannose-phosphates and structurally related carbohydrates, may be involved in the adhesive interaction mediating lymphocyte recirculation

    Carbohydrate specificity of sea urchin sperm bindin: a cell surface lectin mediating sperm-egg adhesion.

    Get PDF
    We have examined the carbohydrate specificity of bindin, a sperm protein responsible for the adhesion of sea urchin sperm to eggs, by investigating the interaction of a number of polysaccharides and glycoconjugates with isolated bindin. Several of these polysaccharides inhibit the agglutination of eggs by bindin particles. An egg surface polysaccharide was found to be the most potent inhibitor of bindin-mediated egg agglutination. Fucoidin, a sulfated fucose heteropolysaccharide, was the next most potent inhibitor, followed by the egg jelly fucan, a sulfated fucose homopolysaccharide, and xylan, a beta(1 leads to 4) linked xylose polysaccharide. A wide variety of other polysaccharides and glycoconjugates were found to have no effect on egg agglutination. We also report that isolated bindin has a soluble lectinlike activity which is assayed by agglutination of erythrocytes. The bindin lectin activity is inhibited by the same polysaccharides that inhibit egg agglutination by particulate bindin. This suggests that the egg adhesion activity of bindin is directly related to its lectin activity. We have established that fucoidin binds specifically to bindin particles with a high apparent affinity (Kd = 5.5 X 10(-8) M). The other polysaccharides that inhibit egg agglutination also inhibit the binding of 125I-fucoidin to bindin particles, suggesting that they compete for the same site on bindin. The observation that polysaccharides of different composition and linkage type interact with bindin suggests that the critical structural features required for binding may reside at a higher level of organization. Together, these findings strengthen the hypothesis that sperm-egg adhesion in sea urchins is mediated by a lectin-polysaccharide type of interaction

    Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor.

    Get PDF
    Lymphocyte attachment to high endothelial venules within lymph nodes is mediated by the peripheral lymph node homing receptor (pnHR), originally defined on mouse lymphocytes by the MEL-14 mAb. The pnHR is a calcium-dependent lectin-like receptor, a member of the LEC-CAM family of adhesion proteins. Here, using a soluble recombinant form of the homing receptor, we have identified an endothelial ligand for the pnHR as an approximately 50-kD sulfated, fucosylated, and sialylated glycoprotein, which we designate Sgp50 (sulfated glycoprotein of 50 kD). Recombinant receptor binding to this lymph node-specific glycoprotein requires calcium and is inhibitable by specific carbohydrates and by MEL-14 mAb. Sialylation of the component is required for binding. Additionally, the glycoprotein is precipitated by MECA-79, an adhesion-blocking mAb reactive with lymph node HEV. A related glycoprotein of approximately 90 kD (designated as Sgp90) is also identified

    The complement binding-like domains of the murine homing receptor facilitate lectin activity.

    Get PDF
    The leukocyte homing receptor (HR), the endothelial leukocyte adhesion molecule, and gmp140/platelet activation-dependent granule membrane protein are members of a family of adhesion molecules, termed the lectin cell adhesion molecules (LEC-CAMS) which are unified by a multi-domain structure containing a lectin motif, an epidermal growth factor-like (egf) motif, and variable numbers of a complement binding-like (CB) motif. Previous data have indicated a predominant role for the lectin motif in cell adhesion directed by the LEC-CAMS, although the egf-like domain of the HR may also play a potential role in cell binding. While the role(s) of the CB domains in the LEC-CAMS is currently not understood, they have been hypothesized to act as rigid spacers or stalks for lectin and perhaps, egf domain presentation. In this paper, we analyze the functional characteristics of murine HR-IgG chimeras containing the lectin, lectin plus egf, and lectin plus egf plus CB domains. The Mel 14 mAb, an adhesion blocking antibody which recognizes a conformational determinant in the N-terminus of the HR lectin domain, shows a significantly decreased affinity for a HR construct which lacks the CB motifs, consistent with the possibility that the CB domains are involved with lectin domain structure. In agreement with this conjecture, HR mutants lacking the CB domains show a profound decrease in lectin-specific interaction with the carbohydrate polyphosphomannan ester, suggesting that the changes in Mel 14 affinity for the lectin domain are reflected in lectin functionality. Various assays investigating the interactions between the HR deletion mutants and the peripheral lymph node high endothelium, including cell blocking, immunohistochemical staining, and radioactively labeled ligand binding, all showed that removal of the CB domains results in a lack of HR adhesive function. These results imply that the CB domains of the HR, and, by analogy, the other members of the LEC-CAM family, may play important structural roles involving induction of lectin domain conformation and resultant functionality
    • …
    corecore