739 research outputs found

    Interannual to Decadal Variations of Submesoscale Motions around the North Pacific Subtropical Countercurrent

    Get PDF
    The outputs from a submesoscale permitting hindcast simulation from 1990 to 2016 are used to investigate the interannual to decadal variations of submesoscale motions. The region we focus on is the subtropical Northwestern Pacific including the subtropical countercurrent. The submesoscale kinetic energy (KE) is characterized by strong interannual and decadal variability, displaying larger magnitudes in 1996, 2003, and 2015, and smaller magnitudes in 1999, 2009, 2010, and 2016. These variations are partially explained by those of the available potential energy (APE) release at submesoscale driven by mixed layer instability in winter. Indeed, this APE release depends on the mixed layer depth and horizontal buoyancy gradient, both of them modulated with the Pacific Decadal Oscillation (PDO). As a result of the inverse KE cascade, the submesoscale KE variability possibly leads to interannual to decadal variations of the mesoscale KE (eddy KE (EKE)). These results show that submesoscale motions are a possible pathway to explain the impact associated with the PDO on the decadal EKE variability. The winter APE release estimated from the Argo float observations varies synchronously with that in the simulation on the interannual time scales, which suggests the observation capability to diagnose the submesoscale KE variability

    Evidence of Vertical Coupling between the Kuroshio Extension and Topographically Controlled Deep Eddies

    Get PDF
    Strong energy in the 30–60 day band was observed using 39 deep pressure and current records from the Kuroshio Extension System Study (KESS). Energy in this band accounted for 25–50% of the total deep-pressure variance and was strongest under the Kuroshio Extension jet axis. Often, deep-pressure anomalies propagated into the region from the north-northeast and locally intensified as they passed under and interacted with the Kuroshio Extension. The topographically controlled deep-pressure anomalies translate nearly along lines of constant f/H. Statistically significant coherence between 30–60 day upper- and deep-ocean streamfunction anomalies demonstrated that there was strong vertical coupling in that time band. Twenty-five percent of the total upper-ocean streamfunction variance was contained within the 30–60 day band near the Kuroshio Extension. Joint CEOFs of the upper- and deep-ocean streamfunctions revealed that near the axis of the Kuroshio Extension the phases were laterally offset alongstream, with the deep ocean leading the upper ocean. This arrangement is attributed to producing joint development of upper-ocean meanders and deep-pressure anomalies.A numerical process model simulated the interaction of barotropic TRWs with an eastward-flowing baroclinic jet. When the TRWs, used as a surrogate for topographically steered deep-pressure anomalies, passed under the jet, they intensified and upper-ocean meanders steepened, much like the observed interactions. The model illustrates how the interaction between TRWs and an eastward-flowing jet, at its simplest level, can reproduce many of the major traits of our observations. The Ocean General Circulation Model for the Earth Simulator also showed similar processes in the 30–60 day band in the KESS region. The strongest variance in the deep fields occurred under the Kuroshio Extension. Upper and deep low- and high-pressure anomalies propagated south southwestward across the Kuroshio Extension, with model phase speeds and wavelengths matching the KESS observations

    Spreading of Antarctic Bottom Water examined using the CFC-11 distribution simulated by an eddy-resolving OGCM

    Get PDF
    We have investigated the spreading and pathway of Antarctic Bottom Water(AABW) using the simulated distribution of chlorofluorocarbons(CFCs) in a global eddy-resolving(1/10°) OGCM. Our goal is understanding of the processes and pathways determining the distribution of CFCs in the Southern Ocean, where much of this tracer is entrained by formation of deep and bottom water. The simu- lated high CFC-11 water reveals the newly formed AABW around the Antarctic Continent. The main source regions of AABW in the model are in the Weddell Sea(60°- 30°W ), offshore of Wilkes Land(120°- 160°E ) and in the Ross Sea(170°E -160°W ). In our model, spreading of simulated CFC-11 in the deep Southern Ocean from the newly formed AABW regions is more similar to the observed distribution than in coarse-resolution models. In the Weddell Sea, the high CFC-11 water spreads eastward with the Antarctic Circumpolar Current(ACC) and flows northward to the Argentine Basin. The high CFC-11 water from Wilkes Land joins with the high CFC-11 water from the Ross Sea. Some of the high CFC-11 water from Wilkes Land flows northward toward New Zealand. The high CFC-11 water from the Ross Sea flows eastward with the ACC along the Mid Ocean Ridge and northward to the Southeast Pacific Basin

    Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere

    Get PDF
    Ocean eddies (with a size of 100–300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1–50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed

    The effective use of shortwave penetration below the ocean surface in a MOM3-based ocean general circulation model

    Get PDF
    There are two problems with the shortwave penetration scheme used in Modular Ocean Model version 3 (MOM3): (i) the spatiotemporal variability of the thickness of the first layer resulting from the free surface is not considered, and (ii) shortwave irradiance penetrates the ocean bottom. Because both of these problems can cause artificial heat sources or sinks, their effects are evaluated in the present study using a MOM3-based ocean general circulation model. The first problem creates an artificial heat sink (source) in the regions of positive (negative) sea surface height (SSH) with a maximum amplitude greater than 10 W m-2 and decreases (increases) sea surface temperature (SST) by up to 0.3°C on the basis of annual mean. This change in SST leads to a reduction in global mean evaporation and, as a result, an increase in SSH, which enhances the artificial heat sink. After several years of integration, this positive feedback amplifies the effects of the first problem in cases of stand-alone ocean simulations forced by freshwater flux. The estimated artificial heat sink induced by the second problem reaches 50 W m-2, and the decrease in SST exceeds 1.0°C. However, the effects of this problem are restricted within shallow coastal areas and do not involve positive feedback

    Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean

    Get PDF
    The eastern equatorial Atlantic Ocean is subject to interannual fluctuations of sea surface temperatures, with climatic impacts on the surrounding continents. The dynamic mechanism underlying Atlantic temperature variability is thought to be similar to that of the El Nino/Southern Oscillation (ENSO) in the equatorial Pacific, where air-sea coupling leads to a positive feedback between surface winds in the western basin, sea surface temperature in the eastern basin, and equatorial oceanic heat content. Here we use a suite of observational data, climate reanalysis products, and general circulation model simulations to reassess the factors driving the interannual variability. We show that some of the warm events can not be explained by previously identified equatorial wind stress forcing and ENSO-like dynamics. Instead, these events are driven by a mechanism in which surface wind forcing just north of the equator induces warm ocean temperature anomalies that are subsequently advected toward the equator. We find the surface wind patterns are associated with long-lived subtropical sea surface temperature anomalies and suggest they therefore reflect a link between equatorial and subtropical Atlantic variability

    Variability of Kuroshio nitrate flux and transport in the western North Pacific: A model study

    Get PDF
    ACG06-04発表要旨 / 日本地球惑星科学連合2013年大会(2013年5月19日~5月24日, 幕張メッセ国際会議場) / 日本惑星科学連合の許諾に基づき本文ファイルを掲
    corecore