75 research outputs found

    Leap Zagreb Indices of Trees and Unicyclic Graphs

    Get PDF
    By d(vG)d(v|G) and d2(vG)d_2(v|G) are denoted the number of first and second neighbors‎ ‎of the vertex vv of the graph GG‎. ‎The first‎, ‎second‎, ‎and third leap Zagreb indices‎ ‎of GG are defined as‎ ‎LM1(G)=vV(G)d2(vG)2LM_1(G) = \sum_{v \in V(G)} d_2(v|G)^2‎, ‎LM2(G)=uvE(G)d2(uG)d2(vG)LM_2(G) = \sum_{uv \in E(G)} d_2(u|G)\,d_2(v|G)‎, ‎and LM3(G)=vV(G)d(vG)d2(vG)LM_3(G) = \sum_{v \in V(G)} d(v|G)\,d_2(v|G)‎, ‎respectively‎. ‎In this paper‎, ‎we generalize‎ ‎the results of Naji et al‎. ‎[Commun‎. ‎Combin‎. ‎Optim‎. ‎{\bf 2} (2017)‎, ‎99--117]‎, ‎pertaining to trees and unicyclic graphs‎. ‎In addition‎, ‎we determine upper and lower bounds‎ ‎on these leap Zagreb indices and characterize the extremal graphs

    Web 2.0 for Language Learning: Benefits and Challenges for Educators

    Get PDF
    This literature review study explores 44 empirical research studies that report on the integration of Web 2.0 tools into language learning and evaluate the actual impact of using those Web 2.0 tools in language learning. In particular, this review aims to identify the specific Web 2.0 tools integrated in the educational settings, theoretical underpinnings that are commonly used to frame the research, methodologies and data analysis techniques that scholars employ to analyze their research data, the benefits and challenges scholars spotted in their research findings, the pedagogical implications in using Web 2.0 for language learning and future research directions that scholars offer from their research

    The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting a unique, long-duration mission of fundamental physics research in space. The physics objectives include the precise studies of the origin of dark matter, antimatter, and cosmic rays as well as the exploration of new phenomena. Following a 16-year period of construction and testing, and a precursor flight on the Space Shuttle, AMS was installed on the ISS on May 19, 2011. In this report we present results based on 120 billion charged cosmic ray events up to multi-TeV energies. This includes the fluxes of positrons, electrons, antiprotons, protons, and nuclei. These results provide unexpected information, which cannot be explained by the current theoretical models. The accuracy and characteristics of the data, simultaneously from many different types of cosmic rays, provide unique input to the understanding of origins, acceleration, and propagation of cosmic rays.</p

    Analysis of nucleotide sequences and development of ELISA kit for goose and duck parvoviruses in Taiwan

    No full text
    在台灣,鴨鵝小病毒感染症是鴨和鵝的一種極重要的疾病,會造成經濟上極大的損失,而且目前尚未有疫苗的使用,使得疾病的防治更加困難,因此,我們想瞭解鵝小病毒(goose parvovirus;GPV)與正蕃鴨小病毒(Muscovy duck parvovirus;MDPV)之間在核酸序列演化上的關係,以及利用ELISA套組的開發,提供農民選擇被動免疫血清的依據。於是,我們收集台灣各地之分離株,以PCR的方式增幅病毒VP3基因中的一個約540bp片段,再以自動定序的方式定序之,將所得到之核酸序列進行演化親緣樹分析(phylogenetic analysis),結果得知,世界各地之小病毒分離株共可分為兩大群,一群屬於GPV-like的小病毒,一群則是屬於MDPV-like的小病毒,由核酸序列差異性比較之結果可知,在同一群中其差異分別為0-6.5%和0.2-1.7%,但在不同群之間的差異則可達16.2-19.4%。另外在病毒蛋白的原核系統表現方面,我們利用PCR與重組DNA技術,選擇小病毒之非結構(NS1)和結構蛋白(VP1+2和VP3)基因,以原核(E. coli)系統成功地表現出與預期大小相當的產物,分別為88.6、41.4和78.3 kDa之融合蛋白,且這些蛋白皆可以被特異性之S-protein與抗GPV或抗MDPV抗體所辨識。除此之外,我們也將純化後之重組蛋白以不同濃度塗鍍在ELISA平盤上,進行GPV與MDPV之抗體分析,結果以NS1之效果最好,鴨來源之NS1所產生之陽性血清與陰性血清之值比例(positive/negative, P/N ratio)為23.1,所需塗鍍之蛋白量為80 ng/well,而鵝來源之NS1所產生之P/N ratio為18.8,所需塗鍍之蛋白量為40 ng/well即可。於是,我們選擇利用NS1之最佳條件來製備ELISA套組,並且觀察免疫後正蕃鴨血清中變化情形,由結果可知,被免疫與未被免疫的動物於2週齡時以ELISA測定抗體力價,即有統計學上的差異,證實此ELISA可以用來區別受感染與未受感染的動物,並可區別抗體力價高低,作為疾病監控指標。In Taiwan, goose and duck parvovirus infections are one of the important diseases of goslings and ducklings. They might cause a great deal of economical loss. However, no vaccine is yet available, which makes it difficult to control these diseases. This study is aimed to elucidate the phylogenetic relationship between goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) in nucleotide sequences, and to develop an ELISA kit to measure the antibody titers against GPV and MDPV in geese and ducks. The level of antiboddy titer is crucial for farmers to select sera for passive immunization. Towards this goal, we first amplify by PCR a 540 bp fragment from the VP3 gene of parvoviruses isolated from geese and ducks in Taiwan. Nucleotide sequence and phylogenetic analysis reveal that these viruses fall into two major groups: the GPV-like group and the MDPV-like group. Differences of nucleotide sequences within the same group are only 0-6.5 % (within the GPV-like group) and 0.2-1.7 % (within the MDPV-like group). In comparison, differences between the two groups are 16.2-19.4 %. We then expressed the viral nonstructural protein (NS1) and structural proteins (VP1+2 and VP3) in the prokaryotic (E. coli) system by PCR and recombinant DNA techniques. The sizes of expressed proteins (88.6 kDa for NS1, 41.4 kDa for VP1+2, and 78.3 kDa for VP3) are the same as expected. In addition, these recombinant proteins could be recognized specifically by the S-protein and by anti-GPV and anti-MDPV antibodies. These proteins were used to coat ELISA plate after purification. Among them, the NS1 protein was found to be best for the detection of anti-GPV and anti-MDPV antibodies. The recombinant duck NS1 protein could generate an ELISA positive/negative (P/N) ratio of 23.1 and the amount of protein coated is 80 ng/well. In comparison, the recombinant goose NS1 protein could generate a P/N ratio of 18.8, and the amount of protein coated is 40 ng/well. Experiments using sera from infected and non-infected Muscovy ducks revealed that, this GPV (MDPV) NS1-ELISA could differentiate infected and non-infected animals after two weeks of infection. These results indicate that the NS1-ELISA could be used to differentiate infected and non-infected animals, and to determine the titer of antibodies, both are important for the surveillance and control of GPV and MDPV.中文摘要 ……………………………………………………………..I Abstract ………………………………………………………….…..II 目次……………………………………………………………... III 表次……………………………………………………………... V 圖次……………………………………………………………... VI 第一章 緒言………………………………………………………..1 第二章 文獻探討…………………………………………………..3 第一節 鵝小病毒之歷史背景……………………………………..3 第二節 鵝小病毒的特徵…………………………………………..4 2-1 分類………………………………………………………..4 2-2 形態與結構………………………………………………...4 2-3 物理與化學特性…………………………………………...5 2-4 宿主範圍…………………………………………………...5 第三節 病毒的基因體與複製……………………………………...6 3-1 小病毒的基因體…………………………………………...7 3-2 複製………………………………………………………...7 第四節 小病毒之非結構與結構蛋白……………………………...8 4-1 小病毒之非結構(NS)蛋白的功能……………………..8 4-2 小病毒之結構蛋白(VP1、VP2和VP3)的性狀分析… 9 第五節 鴨和鵝小病毒感染症之預防與診斷……………………..10 5-1 鴨和鵝小病毒感染症之預防方法………………………...11 5-2 鴨和鵝小病毒感染症之診斷方法………………………...13 第六節 酵素連結免疫吸附分析(ELISA)應用原理……………15 第三章 材料與方法………………………………………………...17 第一節 台灣GPV和MDPV野外分離株之序列分析…………… 17 1-1 病毒來源…………………………………………………...17 1-2 病毒之增殖………………………………………………...17 1-3 病毒核酸之萃取…………………………………………...17 1-4 聚合連鎖反應…………………………………………...18 1-4.1 引子(primer)之設計…………………………………….18 1-4.2 增幅核酸…………………………………………………...18 1-4.3 PCR產物之電泳分析……………………………………...19 1-5 PCR產物之定序…………………………………………...19 1-6 PCR產物之序列分析……………………………………...20 第二節 重組表現載體的構築……………………………………...20 2-1 基因的增幅………………………………………………...20 2-1.1 引子(primer)的設計…………………………………….20 2-1.2 PCR增幅基因……………………………………………...21 2-2 重組基因之選殖…………………………………………...22 2-2.1 接合反應(ligasion)……………………………………..22 2-2.2 重組質體之轉型作用……………………………………...22 2-2.3 質體的抽取與確認………………………………………...23 2-3 第二次重組基因之選殖…………………………………...23 2-3.1 載體的置備………………………………………………...23 2-3.2 接合作用(ligation)……………………………………..24 2-3.3 重組質體的轉型作用……………………………………...24 第三節 病毒蛋白之表現及確認…………………………………...24 3-1 勝任細胞(competent cells)的置備……………………..24 3-2 病毒蛋白的表現…………………………………………...24 3-3 表現蛋白質之純化………………………………………...25 3-4 重組蛋白之電泳分析與確認……………………………...26 第四節 重組蛋白之應用…………………………………………...27 4-1 ELISA平盤(plate)之置備……………………………...27 4-2 ELISA之分析……………………………………………...27 第四章 結果………………………………………………………...29 第一節 小病毒核酸之比對………………………………………...29 1-1 病毒的增殖………………………………………………...29 1-2 PCR…………………………………………………………29 1-3 核酸定序與序列之比對…………………………………...29 第二節 病毒蛋白之表現…………………………………………...31 2-1 病毒蛋白之表現與確認…………………………………...31 2-2 病毒蛋白之純化與確認…………………………………...32 第三節 重組蛋白之應用…………………………………………...33 第五章 討論………………………………………………………...57 參考文獻 ……………………………………………………………...63 附錄 ……………………………………………………………...7
    corecore