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Abstract: By d(v|G) and d2(v|G) are denoted the number of first and second neigh-
bors of the vertex v of the graph G. The first, second, and third leap Zagreb indices of G

are defined as LM1(G) =
∑

v∈V (G) d2(v|G)2, LM2(G) =
∑

uv∈E(G) d2(u|G) d2(v|G),

and LM3(G) =
∑

v∈V (G) d(v|G) d2(v|G), respectively. In this paper, we generalize the

results of Naji et al. [Commun. Combin. Optim. 2 (2017), 99–117], pertaining to trees

and unicyclic graphs. In addition, we determine upper and lower bounds on these leap
Zagreb indices and characterize the extremal graphs.
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1. Introduction

In this paper, we only consider graphs without multiple edges or loops. The degree of

a vertex v in a considered graph is denoted by d(v). A double star Sr,s is a tree with

exactly two vertices u and v that are not leaves, such that (d(u), d(v)) = (r+1, s+1).

∗ Corresponding Author



180 Leap Zagreb Indices of Trees and Unicyclic Graphs

The triangular unicyclic graph Tr,s,t is a unicyclic graph containing a triangle uvw

with vertices u, v, and w, such that (d(u), d(v), d(w)) = (r + 2, s + 2, t + 2). If uvw

is the triangle of an n-vertex triangular unicyclic graph G, and if G − uvw ∼= Pn−3,

then G will be denoted TPn. By Sn + e is denoted the graph obtained by connecting

with a new edge e two leaf vertices of the star Sn. A graph is called a {C3, C4}-free

graph if it contains neither C3 nor C4.

In the interdisciplinary area where chemistry, physics and mathematics meet,

molecular–graph–based structure descriptors, usually referred to as topological in-

dices, are of significant importance [3, 4, 11]. Among the most important such struc-

ture descriptors are the classical two Zagreb indices [6, 7],

M1(G) =
∑

u∈V (G)

d(u|G)2 and M2(G) =
∑

uv∈E(G)

d(u|G) d(v|G),

where G is a graph whose vertex set is V (G) and whose edge set is E(G). By d(u|G)

is denoted the degree (= number of first neighbors) of the vertex v ∈ V (G) and by

uv the edge between the vertices u and v. For details of the theory of Zagreb indices

see the recent survey [2] and the references cited therein.

Motivated by the success of Zagreb indices, and following an earlier work [10], Naji

et al. [9] introduced the concept of leap Zagreb indices, based on the second degrees

of vertices.

The k-degree of the vertex v ∈ V (G), denoted by dk(v|G) or dk(v), is the number of

vertices of G whose distance to v is equal to k. Evidently, d1(v|G) = d(v|G).

The first, second, and third leap Zagreb indices of a graph G, proposed in [9], are

defined respectively as

LM1(G) =
∑

v∈V (G)

d2(v|G)2

LM2(G) =
∑

uv∈E(G)

d2(u|G) d2(v|G)

LM3(G) =
∑

v∈V (G)

d(v|G) d2(v|G) .

In fact, a quantity identical to the third leap Zagreb index LM3(G) of a graph G

appeared in a paper published in the 1970 [7], but did not attract any attention. The

same was the case with a paper from 2008 [12]. Quite recently, independently of [9],

Ali and Trinajstić re-invented this leap Zagreb index and named it “modified first

Zagreb connection indices” [1].

In [9], the leap Zagreb indices of some graph families and graph joins were determined,

as well as of triangle– and quadrangle–free graphs. In a later work [8], the leap Zagreb

indices of graph operations were studied. Leap Zagreb indices are considered in a

recent survey [5].
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Motivated by these researches, in the present paper we establish sharp upper and lower

bounds on the leap Zagreb indices of trees and unicyclic graphs and characterize the

extremal graphs.

2. Preliminaries

The following functions and definitions will be used throughout the paper. Let

g(n) =


2(n−3)2(n+6)

9 , n ≡ 0 (mod 3)

2(n−3)2(n+6)
9 − 11

9 , n ≡ 1 (mod 3)

2(n−3)2(n+6)
9 − 7

9 , n ≡ 2 (mod 3).

It can be seen that

g(n)− g(n− 1) ≥ 2n2 − 2n− 21

3
. (1)

For an edge e = uv ∈ E(G), we define LM2(e|G) = d2(u|G) d2(v|G), and LM2(e|G)

is written as LM2(e) when no confusion can arise.

Proposition 1. [9] Let Pn and Sn be the path and star on n vertices. For n ≥ 4,
(i) LM1(Sn) = (n− 1)(n− 2)2 and LM1(Pn) = 4(n− 3),
(ii) LM2(Sn) = 0 and LM2(Pn) = 4n− 14,
(iii) LM3(Sn) = (n− 1)(n− 2) and LM3(Pn) = 4n− 10 .

The following results are immediate and their proofs are omitted.

Lemma 1. Let r, s be positive integers with r+s+2 = n. Then LM1(Sr,s) = r3+s3+r2+s2

and LM2(Sr,s) = rs(1 + r + s).
(i) If n is even, then LM2(Sr,s) ≤ (n− 1)(n

2
− 1)2. The equality holds if and only if r = s.

(ii) If n is odd, then LM2(Sr,s) ≤ 1
4
(n − 3)(n − 1)2. The equality holds if and only if

|r − s| = 1.

Proof. By the definitions of LM1 and LM2, it is clear that LM1(Sr,s) = r3 + s3 +

r2 + s2 and LM2(Sr,s) = rs(1 + r + s). Then

LM2(Sr,s) = rs(1 + r + s) = r(n− 2− r)(n− 1) .

Therefore, (i) If n is even, then LM2(Sr,s) = r(n−2−r)(n−1) ≤
(
n−2−r+r

2

)2
(n−1) =

(n− 1)(n
2 − 1)2. The equality holds if and only if r = n− 2− r, i.e., r = s = n−2

2 .

(ii) If n is odd, we consider the function h(r) = r(n − 2 − r)(n − 1) and obtain that

h(r) = r(n− 2− r)(n− 1) ≤ 1
4 (n− 3)(n− 1)2, and the equality holds if and only if

|r − s| = 1.
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Lemma 2. Let n ≥ 6. Then

LM1(TPn) = 4n− 10 , LM1(Sn + e) = (n− 3)(n2 − 2n− 2) .

Lemma 3. Let n ≥ 6 with r+s+t+3 = n. Then LM2(TPn) = 4n−13 and LM2(Tr,s,t) =
(r+ s)(r+ t)+ (r+ s)(s+ t)+ (r+ t)(s+ t)+ r(r+1)(s+ t)+ s(s+1)(r+ t)+ t(t+1)(r+ s).

Lemma 4. Let x ≤ y ≤ z be non-negative integers such that x + y + z + 3 = n and
f(x, y, z) = (x+ y)(x+ z) + (x+ y)(y+ z) + (x+ z)(y+ z) + x(x+ 1)(y+ z) + y(y+ 1)(x+
z) + z(z + 1)(x+ y). Then f(x, y, z) ≤ g(n). Moreover,
(i) if n ≡ 0 (mod 3), then the equality holds if and only if x = y = z.
(ii) If n ≡ 1 (mod 3), then the equality holds if and only if x = y = z − 1.
(iii) If n ≡ 2 (mod 3), then the equality holds if and only if x = y − 1 = z − 1.

Lemma 5. Let n ≥ 6 with r+s+t+3 = n. Then LM3(TPn) = 4n−8 and LM3(Tr,s,t) =
(n− 3)(n+ 2).

Lemma 6. Let G be a {C3, C4}-free graph. Then for any v ∈ V (G),

d2(v) =
∑

u∈N(v)

(d(u)− 1)

where N(v) is the set of first neighbors of the vertex v.

Recall that Lemma 6 was earlier communicated by Naji et al., [9].

3. Main results

In this section, we obtain bounds on the leap Zagreb indices of trees and unicyclic

graphs.

3.1. Extremal trees on leap Zagreb indices

Theorem 1. Let T be an n-vertex tree with n ≥ 4. Then

4(n− 3) ≤ LM1(T ) ≤ (n− 1)(n− 2)2

with the left equality if and only if T ∼= Pn and the right equality if and only if T ∼= Sn.

Proof. Since n ≥ 4, we have diam(T ) ≥ 2. If diam(T ) = 2, then T ∼= Sn. By

Proposition 1, we know that the result is true. If diam(T ) = 3, then T ∼= Sr,s,

where r and s are two positive integers such that r + s + 2 = n. Then by Lemma 1,

LM1(T ) = r3 + s3 + r2 + s2.
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Since r, s ≥ 1, we have LM1(T ) ≥ 2(r2 + s2) ≥ (r + s)2 = (n − 2)2 ≥ 4(n − 3). If

n = 4, then T ∼= P4 and LM1(T ) = (n − 2)2 = 4(n − 3). Thus, the result is true. If

n ≥ 5, then LM1(T ) = (n− 2)2 > 4(n− 3).

On the other hand,

LM1(T ) = r2(r + 1) + s2(s + 1)

= (n− s− 2)2(n− s− 2 + 1) + s2(s + 1)

= (n− 1)(n− 2)2 + s2(3n− 4)− s(3n2 − 10n + 8) .

Since s < n−2, we have s(3n−4)−(3n2−10n+8) < (n−2)(3n−4)−(3n2−10n+8) = 0.

Thus, LM1(T ) < (n− 1)(n− 2)2.

Assume now that diam(T ) ≥ 4 and proceed by induction on n. Let P =

x1x2 . . . xdiam(T ) be a longest path of T . Then x1 is a leaf of T . Let T ′ = T−x1. Then

we have d2(v|T ′) = d2(v|T ) − 1 if v ∈ N(x2|T ′), and d2(v|T ′) = d2(v|T ) otherwise.

By Lemma 6, we have

d2(x1|T ) = d(x2|T )− 1. (2)

Thus,

LM1(T ) = LM1(T ′)−
∑

v∈N(x2|T ′)

d2(v|T ′)2 +
∑

v∈N(x2|T )

d2(v|T )2

= LM1(T ′) + d2(x1|T )2 +
∑

v∈N(x2|T ′)

(d2(v|T )2 − d2(v|T ′)2)

= LM1(T ′) + (d(x2|T )− 1)2 +
∑

v∈N(x2|T ′)

(2d2(v|T )− 1) (Applying Eq. (2))

= LM1(T ′) + (d(x2|T )− 1)(d(x2|T )− 2) + 2
∑

v∈N(x2|T ′)

d2(v|T ) .

By induction, 4(n−4) ≤ LM1(T ′) ≤ (n−2)(n−3)2, with the left equality if and only if

T ′ ∼= Pn−1 and the right equality if and only if T ′ ∼= Sn−1. Moreover, by Lemma 6 we

have d2(v|T ) = d(x2|T )−1 for each v ∈ N(x2|T )\{x3} and d(x2|T ) ≤ d2(x3|T ) ≤ n−3

since diam(T ) ≥ 4. Note that 2 ≤ d(x2|T ) ≤ n− 3. Therefore,

LM1(T ) = LM1(T ′) + (d(x2|T )− 1)(d(x2|T )− 2) + 2
∑

v∈N(x2|T ′)

d2(v|T )

≥ 4(n− 4) + 2d2(x3|T ) ≥ 4(n− 4) + 2d(x2|T ) ≥ 4(n− 3)

with equality if and only if LM1(T ′) = 4(n−4) and d(x2|T ) = 2, which yields T ∼= Pn.
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On the other hand,

LM1(T ) = LM1(T ′) + (d(x2|T )− 1)(d(x2|T )− 2) + 2
∑

v∈N(x2|T ′)

d2(v|T )

≤ LM1(T ′) + 3(d(x2|T )− 1)(d(x2|T )− 2) + 2d2(x3|T )

≤ (n− 2)(n− 3)2 + 3(n− 4)(n− 5) + 2(n− 3)

< (n− 2)(n− 3)2 + (n− 3)(3n− 10)

< (n− 1)(n− 2)2 .

By Proposition 1, we have

Corollary 1. Let T be an n-vertex tree with n ≥ 3. Then LM2(T ) = 0 if and only if
diam(T ) ≤ 2.

Proof. If T ∼= Sn, then by Proposition 1, part (ii), LM2(T ) = 0.

Suppose that LM2(T ) = 0. Then diam(T ) ≤ 2. Otherwise, T would contain a path

P = x1x2x3x4, which would imply LM2(T ) ≥ d2(x2|T )d2(x3|T ) ≥ 1, a contradiction.

Therefore, T ∼= Sn.

We use E(x|G) to denote the set of edges incident with x in G.

Lemma 7. For any tree T with diam(T ) ≥ 4, there exists a tree T ∗ with |V (T ∗)| = |V (T )|
and diam(T ∗) = diam(T )− 1, such that LM2(T

∗) > LM2(T ).

Proof. Choose a longest path P = x1x2 . . . xt in T and let N(x2|T ) = {x1, x3,

y1, . . . , yr}. Then t ≥ 5 since diam(T ) ≥ 4. We construct a new tree T1 as follows:

V (T1) = V (T ),

E(T1) = E(T ) ∪ {x4x1, x4y1, . . . , x4yr} \ {x2x1, x2y1, . . . , x2yr} .

It can be checked that d2(v|T1) ≥ d2(v|T ) for any vertex v ∈ V (T1) and d2(x5|T1) >

d2(x5|T ). Thus, LM2(T1) > LM2(T ). If diam(T1) = diam(T ) − 1, then T1 is a

desired graph and we set T ∗ = T1. Otherwise, diam(T1) = diam(T ). By repeating

the procedure we obtain a tree Tm with |V (Tm)| = |V (T )|, diam(Tm) = diam(T )− 1

and LM2(Tm) > LM2(T ). Then Tm is the desired graph and we set T ∗ = Tm.

Theorem 2. For any n-vertex tree with n ≥ 5 vertices and diam(T ) ≥ 3, it holds
LM2(Pn) ≤ LM2(T ) ≤ LM2(Sr,s), where r, s are two positive integers such that r+s+2 = n
and |r − s| ∈ {0, 1}.
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Proof. The proof is by induction on n. If n = 5, then the result is trivial. Therefore,

assume that n ≥ 6. Let P = x1x2 . . . xdiam(T ) be a longest path of T and T ′ =

T −(N(x2|T )\{x3}). Then d2(v|T ′) = d2(v|T )−d(x2|T )+1 if v = x3 and d2(v|T ′) =

d2(v|T ) otherwise. Thus,

LM2(T ) = LM2(T ′)−
∑

uv∈E(x3|T ′)

d2(u|T ′) d2(v|T ′) +
∑

uv∈E(x2|T )∪E(x3|T )

d2(u|T ) d2(v|T )

= LM2(T ′) +
∑

uv∈E(x3|T )

(d2(u|T ) d2(v|T )− d2(u|T ′) d2(v|T ′))

+
∑

uv∈E(x2|T )\{x2x3}

d2(u|T ) d2(v|T )

= LM2(T ′) +
∑

v∈N(x2|T )\{x3}

d2(x2|T ) d2(v|T )

+
∑

v∈N(x3|T )

(d2(x3|T ) d2(v|T )− d2(x3|T ′) d2(v|T ′))

= LM2(T ′) + d2(x2|T )(d(x2|T )− 1)2 + (d(x2|T )− 1)
∑

v∈N(x3|T )

d2(v|T ) .

By induction, we have 4n − 18 = LM2(Pn−1) ≤ LM2(T ′) ≤ LM2(Sr′,s′), with the

left equality if and only if T ′ ∼= Pn−d(x2|T )+1 and the right equality if and only if

T ′ ∼= Sr′,s′ , where r′, s′ are two positive integers such that r′+s′+2 = n−d(x2|T )+1

and |r′ − s′| ∈ {0, 1}. Since LM2(T ) > 0, by Theorem 1, diam(T ) ≥ 3. Then

d(x2|T ) ≥ 2 and d(x3|T ) ≥ 2.

If d(x2|T ) ≥ 3, then

LM2(T ) ≥ LM2(T ′) + 4d2(x2|T ) + 2
∑

v∈N(x3|T )

d2(v|T ) ≥ 4n− 18 + 4(d(x3|T )− 1)

+ 2d(x3|T )(d(x3|T )− 1) ≥ 4n− 10 > 4n− 14 .

If d(x3|T ) ≥ 3, then

LM2(T ) ≥ LM2(T ′) + d2(x2|T ) +
∑

v∈N(x3|T )

d2(v|T ) ≥ 4n− 18 + (d(x3|T )− 1)

+ d(x3|T )(d(x3|T )− 1) ≥ 4n− 10 > 4n− 14 .

Assume now that d(x2|T ) = d(x3|T ) = 2. Since n ≥ 6, we have diam(T ) ≥ 4. If

diam(T ) = 4, then T ′ ∼= S1,n−4 and by Lemma 1, LM2(T ′) = (n− 4)(n− 2). Thus,

LM2(T ) = LM2(T ′) + d2(x2|T )(d(x2|T )− 1)2 + (d(x2|T )− 1)
∑

v∈N(x3|T )

d2(v|T )

= (n− 4)(n− 2) + 1 + 2 > 4n− 14 .
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If diam(T ) ≥ 5, then d2(x4|T ) ≥ 2 and
∑

v∈N(x3|T ) d2(v|T ) ≥ 3. Thus,

LM2(T ) = LM2(T ′) + d2(x2|T )(d(x2|T )− 1)2 + (d(x2|T )− 1)
∑

v∈N(x3|T )

d2(v|T )

≥ 4n− 18 + 1 + 3 = 4n− 14 ,

with the equality if and only if T ′ ∼= Pn−d(x2|T )+1 and
∑

v∈N(x3|T ) d2(v|T ) = 3. Note

that d(x2|T ) = 2, from which it follows T ∼= Pn.

Now we show the right inequality.

If diam(T ) = 3, then T is a double star. By Lemma 1, we know that the inequality is

true. Now we assume that diam(T ) = p ≥ 4. By Lemma 7, there exists a sequence of

n-vertex trees T1, T2, . . . , Tp−3 such that diam(Ti) = diam(T ) − i and LM2(Ti−1) <

LM2(Ti), where i = 1, 2, . . . , p− 3 and T0 = T . Hence, LM2(T ) < LM2(Tp−3). Note

that diam(Tp−3) = diam(T )− (p− 3) = 3, that is, Tp−3 is a double star. By Lemma

1, LM2(Tp−3) ≤ LM2(Sr,s), where r, s are two positive integers such that r+s+2 = n

and |r − s| ∈ {0, 1}. Hence, LM2(T ) < LM2(Sr,s), which completes the proof.

Theorem 3. Let T be an n-vertex tree with n ≥ 5 vertices. Then 2(2n− 5) ≤ LM3(T ) ≤
(n− 1)(n− 2). The left equality holds if and only if T ∼= Pn whereas the right equality holds
if and only if T is a star or a double star.

Proof. The proof is by induction on n and is fully analogous to that of Theorem 2.

We omit the details.

3.2. Extremal unicyclic graphs on leap Zagreb indices

Theorem 4. Let G be an n-vertex unicyclic graph with n ≥ 6. Then

4n− 10 ≤ LM1(G) ≤ (n− 3)(n2 − 2n− 2)

with the left equality if and only if G ∼= TPn and the right equality if and only if G ∼= Sn + e.

Proof. The proof is by induction on n. If n = 6, then the result is trivial. Now we

assume that n ≥ 7. Let P = x1x2 . . . xt be a longest path of G from a leaf to the

cycle. If t = 0, then G ∼= Cn and LM1(G) = 4n < (n− 3)(n2 − 2n− 2). So the result

is true.

Assume now that t ≥ 1 and let G′ = G − x1. Then d2(v|G) = d2(v|G′) + 1 if
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v ∈ N(x2|G′) and d2(v|G′) = d2(v|G) otherwise. Thus,

LM1(G) = LM1(G′)−
∑

v∈N(x2|G′)

d2(v|G′)2 +
∑

v∈N(x2|T )

d2(v|G)2

= LM1(G′) + d2(x1|G)2 +
∑

v∈N(x2|G′)

(d2(v|G)2 − d2(v|G′)2)

= LM1(G′) + (d(x2|G)− 1)2 +
∑

v∈N(x2|G′)

(2d2(v|G)− 1)

= LM1(G′) + (d(x2|G)− 1)(d(x2|G)− 2) + 2
∑

v∈N(x2|G′)

d2(v|G) .

By induction, we have 4n − 14 ≤ LM1(G′) ≤ (n − 4)(n2 − 4n + 1), with the left

equality if and only if G′ ∼= TPn−1 and the right equality if and only if G′ ∼= Sn−1 +e.

If d(x2|G) ≥ 3 or d2(x3|G) ≥ 2, then LM1(G) ≥ LM1(G′) + 4 = 4n − 10, with the

equality if and only if G′ ∼= TPn−1, and d(x2|G) = 3 and d2(x3|G) ≤ 1 or d(x2|G) ≤ 2

and d2(x3|G) = 2. Since n ≥ 7, d2(x3|G) ≥ 2. So the equality holds if and only if

G′ ∼= TPn−1, d(x2|G) = 2, and d2(x3|G) = 2, which implies that G′ ∼= TPn.

If d(x2|G) ≤ 2 and d2(x3|G) ≤ 1, then d(x2|G) = 2 and d2(x3|G) = 1. Thus,

N [x3|G] = V (G) \ {x1} and G′ ∼= Sn−1 + e. It follows hat LM1(G) ≥ LM1(G′) + 2 =

(n− 4)(n2 − 4n + 1) + 2 > 4n− 10.

On the other hand, if d(x2|G) ≤ n− 2, then

LM1(G) ≤ LM1(G′) + (n− 3)(n− 4) + 2(n− 3)2

≤ (n− 4)(n2 − 4n + 1) + (n− 3)(3n− 10)

= (n− 3)(n2 − 2n− 2)− (6n− 20)

< (n− 3)(n2 − 2n− 2) .

If d(x2|G) ≥ n− 1, then G′ ∼= Sn + e and LM1(G) = (n− 3)(n2 − 2n− 2).

Theorem 5. Let G be an n-vertex unicyclic graph with at least eight vertices. Then

LM2(TPn) < LM2(G) < LM2(Tr,s,t)

where r, s, and t are positive integers, such that r ≥ s ≥ t, r+ s+ t+3 = n, and |r− t| ≤ 1.

Proof. We first prove the left inequality. The proof is by induction on n. If n = 8,

then the result can be verified by computer search. Therefore, we assume that n ≥ 9.

Note that if G ∼= TPn, then LM2(G) = 4n − 13. Now we show that there exists no

unicyclic graph G having minimum LM2(G), but G 6∼= TPn. Otherwise, let G∗ be

such a graph for which

LM2(G∗) ≥ LM2(TPn) = 4n− 13 . (3)
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Note that LM2(Cn) = 4n > 4n−13, implying that G∗ is not a cycle. Therefore, there

exists a vertex v with degree one in G∗. Let vuw be a path in G∗ with d(w|G∗) 6= 1.

Case 1. If d(u|G∗) ≥ 3, then d2(v|G∗) ≥ 2.

If d2(u|G∗) ≥ 2, then LM2(uv|G∗) ≥ 4. Let H = G∗ − v. Then LM2(G∗) ≥
LM2(H) + LM2(uv|G∗) ≥ LM2(H) + 4. By induction, LM2(H) ≥ 4(n − 1) − 13

and so we have LM2(G∗) ≥ 4n − 13. Due to LM2(G∗) being minimum, we can

deduce H ∼= TPn−1. Therefore, G∗ is the graph obtained by adding a vertex u and

an edge uv, where v is a vertex with degree one in TPn−1. It is clear that LM2(G∗)

is minimum if and only if G∗ ∼= TPn.

If d2(u|G∗) = 1, then d2(v|G∗) ≥ 2. Then d2(x|H) = d2(x|G∗) − 1 for any x ∈
N(u) \ {v}. Therefore,

LM2(G∗) ≥LM2(H) + LM2(uv|G∗) +
∑

e∈E(u|G∗)\{uv}

LM2(e)−
∑

e∈E(u|H)\{uv}

LM2(e)

≥4(n− 1)− 13 + 2 + d2(u)(d(u)− 1) ≥ 4n− 13 .

Since LM2(G∗) is minimum, we have H ∼= TPn−1. Therefore, G∗ is the graph ob-

tained by adding a vertex u and an edge uv, where v is a vertex with degree one in

TPn−1. Clearly, LM2(G∗) is minimum if and only if G∗ ∼= TPn.

If d2(u) = 0, then G∗ is the graph obtained by adding an edge to the star. Clearly,

LM2(G∗) > 4n− 13, a contradiction with Eq. (3).

Case 2. If d(u) = 2, then d2(u) = d(w) − 1 and d2(v) = 1. First, we show that

d2(w) ≥ 2. Otherwise, N [w] ∪ {v} = V (G∗). Since n ≥ 9, there is a vertex x ∈ N(w)

with d(x) = 1. Then we get the left inequality as desired by the proof of Case 1. Now

we have d2(w) ≥ 2 and so d2(y) ≥ 1, for each y ∈ V (G∗). Therefore,

LM2(G) ≥ LM2(H) + LM2(uv|G∗) + LM2(uw|G∗)
+

∑
e∈(E(w|G∗)\{uw})

LM2(e)−
∑

e∈(E(w|H)\{uw})

LM2(e)− LM2(uw|H)

≥ 4(n− 1)− 13 + d2(u) + d2(u) ∗ d2(w) +
∑

v∈N(w)\{u}

d2(v)

− d2(u)(d2(w)− 1)

≥ 4(n− 1)− 13 + d(w)− 1 + d(w)− 1 +
∑

v∈N(w)\{u}

d2(v) .

If there is a vertex q ∈ N(w)− {u} with d2(q) ≥ 2 or d(w) ≥ 3, then

LM2(G) ≥ 4(n− 1)− 13 + d(w)− 1 + d(w)− 1 +
∑

v∈N(w)\{u}

d2(v)

≥ 4(n− 1)− 13 + d(w)− 1 + d(w)− 1 + 2 ≥ 4n− 13 .
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We now only consider the condition d(w) = 2 and d2(x) = 2 for any x ∈ N(w)−{u}.
Then all vertices except u, v, x are adjacent to x. Since n ≥ 9, there is a leaf adjacent

to x and d(x) ≥ 3. Then we get the inequality by the proof of Case 1.

Now we prove the right inequality. Let G′ be a unicyclic graph that maximizes

LM2(G′) and C = v1v2 · · · vk be the unique cycle of G′. Then

Claim 1. For any u ∈ V (G′), d(u,C) ≤ 1.

Proof. Suppose to the contrary that there exists a vertex u such that d(u,C) =

p− 1 ≥ 2. Assume that u1u2 · · ·up is a shortest path from u1 to C where u1 = u and

up = vi for some i = 1, 2, . . . , k.

If p ≥ 4, then we construct a graph G′′ such that V (G′′) = V (G′) and E(G′′) =

E(G′) ∪ {up−3x|x ∈ L(up−1)} \ {up−1x|x ∈ L(up−1)}. Then LM2(G′′) > LM2(G′),

contradicting with the assumption that G′ has maximum LM2(G′).

If p = 3, then we construct a graph G′′ such that V (G′′) = V (G′) and E(G′′) =

E(G′) ∪ {vi−1x|x ∈ L(up−1)} \ {up−1x|x ∈ L(up−1)}. Then LM2(G′′) > LM2(G′),

contradicting with the assumption that G′ has maximum LM2(G′).

For the upper bound, the proof is by induction on n. If n = 8, we can verify the

result by computer search. Now we consider the case n ≥ 9 and suppose that for any

unicyclic graph G′′ of order n− 1,

LM2(G′′) ≤ LM2(Tr′,s′,t′), (4)

where r′ ≥ s′ ≥ t′, r′ + s′ + t′ + 3 = n− 1 and |r′ − t′| ≤ 1.

It can be verified that LM2(Cn) < LM2(Tr,s,t), where r ≥ s ≥ t, r+s+ t+3 = n and

|r − t| ≤ 1. Therefore, G′ is not a cycle. Therefore, each vertex not in C of degree

one and has a neighbor in C.

If k = 3,then by Lemmas 4 and 5, the right inequality holds.

If k = 4, then G′ is a graph whose removal of all leaf vertices results in C4. Then by

analysis a function with three variables, we can obtain the desired result.

If k = 5, then G′ is a graph whose removal of all leaf vertices results in C5. Then by

analysis a function with four variables, we can obtain the desired result.

Now we consider the case k ≥ 6. Let vi be a vertex in C with minimum degree.

Construct a graph G′′ such that V (G′′) = V (G′) \ {vi−1} and E(G′′) = E(G′) ∪
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{vi−2vi} ∪ {vix|x ∈ L(vi−1)} \ {vi−1x|x ∈ L(vi−1)}. Let

A1 = {vi−1u|u ∈ L(vi−1|G′)},
B1 = {vi−1vi−2},
C1 = {viu|u ∈ L(vi|G′)},
D1 = E(G′) \ (A1 ∪B1 ∪ {vi−1vi} ∪ C1 ∪ E1),

E1 = {vivi+1},
A2 = {viu|u ∈ L(vi−1|G′)},
B2 = {vi−2vi},
C2 = {viu|u ∈ L(vi|G′′)},
D2 = E(G′′) \ (A2 ∪B2 ∪ E1).

We define a one-to-one mapping h : E(G′)→ E(G′′) such that

h(vpvq) = vpvq if vpvq ∈ D1,

h(vi−1u) = viu if u ∈ L(vi−1|G′), i.e., vi−1u ∈ A1,

h(vi−1vi−2) = vi−2vi, i.e., vi−1u ∈ B1.

Let

∆1 = d2(vi−2|G′)d2(vi−1|G′)− d2(vi−2|G′′)d2(vi|G′′) .

Then by the choice of vi and Lemma 6 we have

∆1 = (d(vi−3|G′) + d(vi−1|G′)− 2)(d(vi−2|G′) + d(vi|G′)− 2)

− (d(vi−3|G′′) + d(vi|G′′)− 2)(d(vi−2|G′′) + d(vi+1|G′′)− 2) .

Since d(vj |G′) = d(vj |G′′) for any j ∈ {i − 3, i − 2, i + 1}, d(vi|G′) − 2 ≥ 0, and

d(vi|G′′) = d(vi|G′) + d(vi−1|G′)− 2, we have ∆1 ≤ 0, i.e., for any e ∈ B1

LM2(e|G′) ≤ LM2(h(e)|G′′). (5)

For any vertex u ∈ L(vi−1) in G′,

d2(u|G′)d2(vi−1|G′) = (d(vi|G′)− 1)d2(vi|G′)
= (d(vi|G′)− 1)(d(vi−2|G′) + d(vi|G′)− 2),

and

d2(u|G′′)d2(vi|G′′) = (d(vi|G′′)− 1)d2(vi|G′′)
= (d(vi|G′′)− 1)(d(vi−2|G′′) + d(vi+1|G′′)− 2) .
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Since d(vj |G′) = d(vj |G′′) for any j ∈ {i− 1, i + 2},

d2(u|G′)d2(vi−1|G′) ≤ d2(u|G′′)d2(vi|G′′) .

Then for any e ∈ A1, we have

LM2(e|G′) ≤ LM2(h(e)|G′′) .

Now for any vertex u ∈ L(vi) in G′, we have

d2(u|G′)d2(vi|G′) = (d(vi|G′)− 1)d2(vi|G′)
= (d(vi|G′)− 1)(d(vi−1|G′) + d(vi+1|G′)− 2),

d2(u|G′′)d2(vi|G′′) = (d(vi|G′′)− 1)d2(vi|G′′)
= (d(vi|G′) + d(vi−1)− 3)(d(vi−2|G′) + d(vi+1|G′)− 2) .

Let ∆2 = d2(u|G′′)d2(vi|G′′)− d2(u|G′)d2(vi|G′). Then

∆2 = (d(vi|G′)− 1)(d(vi−2|G′)− d(vi−1|G′)) + (d(vi−1|G′)− 2)(d(vi−2|G′)
+ d(vi+1|G′)− 2) = (d(vi−1|G′)− 2)(d(vi+1|G′)− 1− d(vi|G′) + 1)

+ (d(vi−2|G′)− 2)(d(vi|G′)− 1) + (d(vi−1|G′)− 2)(d(vi−2|G′)− 1) ≥ 0 .

Then for any e ∈ C1, we have

LM2(e|G′) ≤ LM2(h(e)|G′′) .

Now for e ∈ E1, we have

d2(vi|G′)d2(vi+1|G′) = (d(vi+1|G′) + d(vi−1|G′)− 2)(d(vi|G′) + d(vi+2|G′)− 2),

and

d2(vi|G′′)d2(vi+1|G′′) = (d(vi+1|G′′) + d(vi−2|G′′)− 2)(d(vi|G′′)
+ d(vi+2|G′′)− 2) = (d(vi+1|G′) + d(vi−2|G′)− 2)(d(vi|G′)
+ d(vi−1|G′)− 2 + d(vi+2|G′)− 2) .

Let ∆3 = d2(vi|G′)d2(vi+1|G′)− d2(vi|G′′)d2(vi+1|G′′). Then

∆3 = −(d(vi+1|G′)− 2)(d(vi−1|G′)− 2) + (d(vi−2|G′)− d(vi−1|G′))(d(vi|G′)
+ d(vi+1|G′)− 2)− d(vi−2|G′)(d(vi−1|G′)− 2)

≤ (d(vi−2|G′)− d(vi−1|G′))(d(vi|G′) + d(vi+1|G′)− 2) .
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• If d(vi−2|G′)− d(vi−1|G′) < 0, then

(d(vi−2|G′)− d(vi−1|G′))(d(vi|G′) + d(vi+1|G′)− 2) < 0 .

• If d(vi−2|G′)− d(vi−1|G′) > 0, then

∆3 ≤ (d(vi−2|G′)− d(vi−1|G′))(d(vi|G′) + d(vi+1|G′)− 2)

≤
(
d(vi−1|G′)− d(vi−2|G′) + d(vi|G′) + d(vi+1|G′)− 2

2

)2

≤
(
d(vi|G′) + d(vi+1|G′)− 2

2

)2

≤
(
n− 2

2

)2

.

As above, for e ∈ E1,

LM2(e|G′)− LM2(e|G′′) ≤
(
n− 2

2

)2

.

Now we have

LM2(vivi−1|G′) = (d(vi−1|G′) + d(vi+1|G′)− 2)(d(vi|G′) + d(vi−2|G′)− 2)

≤
(
d(vi−1|G′) + d(vi+1|G′) + d(vi|G′) + d(vi−2|G′)− 4

2

)2

≤
(
n− 2

2

)2

.

Finally, it is clear that for any e ∈ D1

LM2(e|G′) ≤ LM2(h(e)|G′′) . (6)
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Since E(G′) = A1 ∪B1 ∪D1 ∪ {vi−1vi}, together with Eqs. (5)–(6) we obtain

LM2(G′) =
∑
e∈A1

LM2(e|G′) +
∑
e∈B1

LM2(e|G′) +
∑
e∈D1

LM2(e|G′)

+
∑
e∈C1

LM2(e|G′) + LM2(vivi+1|G′) + LM2(vivi−1|G′)

≤
∑
e∈A2

LM2(e|G′′) +
∑
e∈B2

LM2(e|G′′) +
∑
e∈D2

LM2(e|G′′)

+
∑
e∈C2

LM2(e|G′′) + LM2(vivi+1|G′′) + LM2(vivi+1|G′)

− LM2(vivi+1|G′′) + LM2(vivi−1|G′)

≤ LM2(G′′) +

(
n− 2

2

)2

+

(
n− 2

2

)2

< g(n− 1) +
2n2 − 2n− 21

3
(apply induction assumption Eq. (4))

≤ g(n),

contradicting to the assumption made on the graph G′.

By this, the proof of Theorem 5 is completed.

In a manner analogous to the proof of Theorem 5 we can establish the following:

Theorem 6. Let G be an n-vertex unicyclic graph with n ≥ 6. Then 4n−8 ≤ LM3(G) ≤
(n− 3)(n+2), where r, s, t are positive integers such that r+ s+ t+3 = n. The left equality
holds if and only if G ∼= TPn and the right equality holds if and only if G ∼= Tr,s,t for
r, s, t ≥ 0.
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