35 research outputs found

    Organic nitrate aerosol formation via NO³ + biogenic volatile organic compounds in the southeastern United States

    Get PDF
    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO₃) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO₃ to terpenes are correlated with increase in gasand aerosol-organic nitrate concentrations made during the campaign. Correlation of NO₃ radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C₁₀H₁₇NO₅, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C₅H₉NO₅ was observed to contribute less than 1% of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45% of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO₃ uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO₃ CBVOCs

    Chemical defence in chrysomelid eggs and neonate larvae

    No full text
    ABSTRACT. Eggs and neonate larvae of chrysomelid beetles (sub‐tribes Chrysomelina and Phyllodectina) were investigated for the presence of defensive substances. The two isoxazolinone glucosides (compounds 1 and 2), characteristic of the adult defence secretion, were detected in the eggs of all studied species. Compound 2, containing a nitropropionate, is always present in concentrations (above 10‐2 M), which are highly deterrent to the ant Myrmica rubra. This compound is not at all or only slightly toxic to ants at 10‐2 M. Compound 1, devoid of nitropropionate, is a minor constituent, and is neither deterrent nor toxic to ants. The five Chrysomela species studied and Phratora vitellinae also sequester salicin in their eggs in amounts highly deterrent and toxic to ants. A single Chrysomela egg often contains enough salicin to kill an ant. While the isoxazolinones are discarded with the egg shells, salicin is used by neonate larvae as a precursor for the production of salicylaldehyde in the thoracic defence glands, already functional at hatching. No salicin could be detected in the eggs of those species whose larvae produce cyclopentanoid monoterpenes, even if they feed on Salicaceae. No larva of any species seems to be able to produce detectable amounts of monoterpenes at birth. A very early defence, possible only in those species using salicin as the precursor for their defensive secretion, could be highly advantageous in protecting the clustered larvae during the long process of hatching and in avoiding cannibalism between siblings. Only trace amounts of oleic acid were found in the eggs of Gastrophysa viridula, in contrast to previous reports on its presence in large quantities in the American G. cyanea. Copyright © 1986, Wiley Blackwell. All rights reservedSCOPUS: ar.jFLWNAinfo:eu-repo/semantics/publishe

    Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels

    No full text
    Allelochemicals in herbivore diet are known to affect the development of higher trophic levels, such as parasitoids and predators. 2. This study examines how differing levels of nicotine affects the development of a herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Separate cohorts of the herbivore, Manduca sexta, were fed on artificial diets containing 0.0, 0.1, and 0.5% wet weights of nicotine. Some of the larvae in each cohort were separately parasitised in the first (L1) and third (L3) instars by the gregarious endoparasitoid, Cotesia congregata. Newly emerged parasitoid cocoons were, in 3. Pupal mass in M. sexta was negatively correlated with nicotine concentrations in the artificial diet, although larval development time was unaffected. 4. Hyperparasitoid survival was highest when there were low levels of nicotine in the diet of M. sexta. Cocoon mass in C. congregata and adult mass in L. nana were mostly affected by nicotine levels in host diet when L1 M. sexta larvae were parasitised. The effects were slightly stronger on L. nana than on C. congregata, indicating the presence of both qualitative and quantitative effects of nicotine concentration on both species. 5. The results suggest that allelochemicals in herbivore diet can have both direct and indirect effects on the performance of higher trophic levels. However, in multitrophic interactions these effects can vary with the stage of the herbivore attacked by the primary parasitoid, as well as with the strategy employed by the herbivore to deal with plant phytotoxins.
    corecore