372 research outputs found

    Does nasal surgery improve multilevel surgical outcome in obstructive sleep apnea:A multicenter study on 735 patients

    Get PDF
    Objective Does nasal surgery affect multilevel surgical success outcome. Methods Prospective eight country nonrandomized trial of 735 obstructive sleep apnea (OSA) patients, who had multilevel palate and/or tongue surgery, divided into two groups, with or without nose surgery. Results There were 575 patients in nose group, 160 patients in no nose group. The mean age for nose group 44.6 ± 11.4, no nose group 44.2 ± 11.8. Mean preoperative BMI for nose group 27.5 ± 3.6, no nose group 27.5 ± 4.1, mean postoperative BMI nose group 26.3 ± 3.7, no nose group 27.1 ± 3.8 (P = .006). Mean preoperative AHI nose group 32.7 ± 19.4, no nose group 34.3 ± 25.0 (P = .377); and mean postoperative AHI nose group 13.5 ± 10.2, no nose group 17.1 ± 16.0 (P = .001). Mean preoperative ESS nose group was 11.3 ± 4.7, no nose group was 10.4 ± 5.4 (P = .051); and mean postoperative ESS nose group was 5.3 ± 3.2, no nose group was 6.7 ± 2.8 (P = .001). The nose group had higher percentage change (adjusted for age, gender, BMI) in AHI (33.7%, 95% CI 14% to 53.5%) compared to the no nose group (P = .001); the nose group also had more percentage change in ESS (37%, 95% CI 23.6% to 50.3%) compared to the no nose group (P < .001). Change in BMI did not affect AHI nor ESS change (Cohen effect 0.03 and 0.14, respectively). AHI change in both groups were also statistically significant in the mild OSA (P = .008) and the severe OSA (P = .01). Success rate of surgery for the nose group 68.2%, while the no nose group 55.0% (P = .002). Conclusion Combining nose surgery in multilevel surgery improves surgical success. Level of evidence IIC

    Transformation of β-Ni(OH)2to NiO nano-sheets via surface nanocrystalline zirconia coating: Shape and size retention

    Get PDF
    Shape and size of the synthesized NiO nano-sheets were retained during transformation of sheet-like β-Ni(OH)2to NiO at elevated temperatures via nano-sized zirconia coating on the surface of β-Ni(OH)2. The average grain size was 6.42 nm after 600 °C treatment and slightly increased to 10 nm after 1000 °C treatment, showing effective sintering retardation between NiO nano-sheets. The excellent thermal stability revealed potential application at elevated temperatures, especially for high temperature catalysts and solid-state electrochemical devices

    Low-mass pre--main-sequence stars in the Magellanic Clouds

    Full text link
    [Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of their star-forming regions, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of PMS stars in the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.Comment: Review paper, 26 pages (in LaTeX style for Springer journals), 4 figures. Accepted for publication in Space Science Review

    A parametric study on the dynamic response of planar multibody systems with multiple clearance joints

    Get PDF
    A general methodology for dynamic modeling and analysis of multibody systems with multiple clearance joints is presented and discussed in this paper. The joint components that constitute a real joint are modeled as colliding bodies, being their behavior influenced by geometric and physical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory together with a dissipative term, is used to evaluate the intra-joint contact forces. Furthermore, the incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also discussed. The suitable contact-impact force models are embedded into the dynamics of multibody systems methodologies. An elementary mechanical system is used to demonstrate the accuracy and efficiency of the presented approach, and to discuss the main assumptions and procedures adopted. Different test scenarios are considered with the purpose of performing a parametric study for quantifying the influence of the clearance size, input crank speed and number of clearance joints on the dynamic response of multibody systems with multiple clearance joints. Additionally, the total computation time consumed in each simulation is evaluated in order to test the computational accuracy and efficiency of the presented approach. From the main results obtained in this study, it can be drawn that clearance size and the operating conditions play a crucial role in predicting accurately the dynamic responses of multibody systems.Fundação para a Ciência e a Tecnologia (FCT

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    corecore