1,208 research outputs found

    Rough cut tool path planning for B-spline surfaces using convex hull boxes

    Get PDF
    The objective of this paper is to present a non-uniform layered rough cut plan for B-spline surfaces using convex hull boxes. The tool path plan generated by this method will rapidly remove most redundant material from stock material without overcutting. First, a B-spline surface is decomposed into piecewise Bezier surfaces, of which the convex hull boxes form an approximate model for rough cutting. Then, according to the top planes of those convex hull boxes, the stock material is divided into layers of different thickness. The cavity contour for each layer is obtained using a simplified union Boolean operation on convex hull boxes. Finally, from the top down, each layer is processed like a 2D pocket die cavity. The algorithm is implemented on a personal computer. It is shown that the rough cut plan is very efficient since no computation for solving nonlinear equations is needed, and no overcutting occurs since B-spline surfaces are protected by the convex hull property of Bezier surfaces

    A characteristic free criterion of birationality

    Get PDF
    One develops {\em ab initio} the theory of rational/birational maps over reduced, but not necessarily irreducible, projective varieties in arbitrary characteristic. A numerical invariant of a rational map is introduced, called the Jacobian dual rank. It is proved that a rational map in this general setup is birational if and only if the Jacobian dual rank attains its maximal possible value. Even in the "classical" case where the source variety is irreducible there is some gain for this invariant over the degree of the map as it is, on one hand, intrinsically related to natural constructions in commutative algebra and, on the other hand, is effectively straightforwardly computable. Applications are given to results so far only known in characteristic zero. In particular, the surprising result of Dolgachev concerning the degree of a plane polar Cremona map is given an alternative conceptual angle.Comment: 24 page

    Proximity effect and strong coupling superconductivity in nanostructures built with an STM

    Full text link
    We present high resolution tunneling spectroscopy data at very low temperatures on superconducting nanostructures of lead built with an STM. By applying magnetic fields, superconductivity is restricted to length scales of the order of the coherence length. We measure the tunneling conductance and analyze the phonon structure and the low energy DOS. We demonstrate the influence of the geometry of the system on the magnetic field dependence of the tunneling density of states, which is gapless in a large range of fields. The behavior of the features in the tunneling conductance associated to phonon modes are explained within current models.Comment: 4 figures, 4 page

    Inherent Inhomogeneities in Tunneling Spectra of BSCCO Crystals in the Superconducting State

    Full text link
    Scanning Tunneling Spectroscopy on cleaved BSCCO(2212) single crystals reveal inhomogeneities on length-scales of \sim30 A˚\AA. While most of the surface yields spectra consistent with a d-wave superconductor, small regions show a doubly gapped structure with both gaps lacking coherence peaks and the larger gap having a size typical of the respective pseudo-gap for the same sample.Comment: 4 pages, 4 figure

    Structural and electrical properties of c-axis oriented Y1-xCaxBa2(Cu1-yZny)3O7-delta thin films grown by pulsed laser deposition

    Full text link
    Ca- and Zn-subsituted Y1-xCaxBa2(Cu1-yZny)O7-delta (x = 0, 0.05 and y = 0, 0.02, 0.04, 0.05) thin films were grown on SrTiO3 (100) substrates using the pulsed laser deposition (PLD) technique. Effects of various growth parameters on the quality of the film were studied via X-ray diffraction (XRD), atomic force microscopy (AFM), and in-plane resistivity, rhoab(T), measurements. The deposition temperature and oxygen partial pressure were gradually increased to 820C and 1.20 mbar respectively. Films grown under these conditions exhibited good c-axis orientation (primarily limited by the grain size) and low values of the extrapolated residual resistivity, rho(0), at zero temperature. The planar hole content, p, was determined from the room temperature thermopower, S[290K], measurements and the effects of oxygen annealing were also studied. Fully oxygenated samples were found to be overdoped with p ~ 0.195. The Superconducting transition temperature Tc(p), and rho(T,p) showed the expected systematic variations with changing Zn content.Comment: Submitted to Physica C (2003

    Low-Frequency Optical Conductivity in Inhomogeneous d-wave Superconductors

    Full text link
    Motivated by the recent optical conductivity experiments on Bi_2Sr_2CaCu_2O_{8+delta} films, we examine the possible origin of low-frequency dissipation in the superconducting state. In the presence of spatial inhomogeneity of the local phase stiffness rho_s, it is shown that some spectral weight is removed from omega=0 to finite frequencies and contribute to dissipation. A case where both rho_s and the local normal fluid density are inhomogeneous is also considered. We find an enhanced dissipation at low frequency if the two variations are anti-correlated.Comment: To appear in Phys. Rev.

    Temperature dependence of Vortex Charges in High Temperature Superconductors

    Get PDF
    Using a model Hamiltonian with d-wave superconductivity and competing antiferromagnetic (AF) interactions, the temperature (T) dependence of the vortex charge in high T_c superconductors is investigated by numerically solving the Bogoliubov-de Gennes equations. The strength of the induced AF order inside the vortex core is T dependent. The vortex charge could be negative when the AF order with sufficient strength is present at low temperatures. At higher temperatures, the AF order may be completely suppressed and the vortex charge becomes positive. A first order like transition in the T dependent vortex charge is seen near the critical temperature T_{AF}. For underdoped sample, the spatial profiles of the induced spin-density wave and charge-density wave orders could have stripe like structures at T < T_s, and change to two-dimensional isotropic ones at T > T_s. As a result, a vortex charge discontinuity occurs at T_s.Comment: 5 pages, 5 figure

    Power spectrum of many impurities in a d-wave superconductor

    Full text link
    Recently the structure of the measured local density of states power spectrum of a small area of the \BSCCO (BSCCO) surface has been interpreted in terms of peaks at an "octet" of scattering wave vectors determined assuming weak, noninterfering scattering centers. Using analytical arguments and numerical solutions of the Bogoliubov-de Gennes equations, we discuss how the interference between many impurities in a d-wave superconductor alters this scenario. We propose that the peaks observed in the power spectrum are not the features identified in the simpler analyses, but rather "background" structures which disperse along with the octet vectors. We further consider how our results constrain the form of the actual disorder potential found in this material.Comment: 5 pages.2 figure

    Anisotropic transport in unidirectional lateral superlattice around half-filling of the second Landau level

    Full text link
    We have observed marked transport anisotropy in short period (a=92 nm) unidirectional lateral superlattices around filling factors nu=5/2 and 7/2: magnetoresistance shows a sharp peak for current along the modulation grating while a dip appears for current across the grating. By altering the ratio a/l (with l=sqrt{hbar/eB_perp} the magnetic length) via changing the electron density n_e, it is shown that the nu=5/2 anisotropic features appear in the range 6.6 alt a/l alt 7.2 varying their intensities, becoming most conspicuous at a/l simeq 6.7. The peak/dip broadens with temperature roughly preserving its height/depth up to 250 mK. Tilt experiments reveal that the structures are slightly enhanced by an in-plane magnetic field B_| perpendicular to the grating but are almost completely destroyed by B_| parallel to the grating. The observations suggest the stabilization of a unidirectional charge-density-wave or stripe phase by weak external periodic modulation at the second Landau level.Comment: REVTeX, 5 pages, 3 figures, Some minor revisions, Added notes and reference

    Ground State and Spectral Properties of a Quantum Impurity in d-Wave Superconductors

    Full text link
    The variational approach of Gunnarsson and Sch\"onhammer to the Anderson impurity model is generalized to study d-wave superconductors in the presence of dilute spin-1/2 impurities. We show that the local moment is screened when the hybridization exceeds a nonzero critical value at which the ground state changes from a spin doublet to a spin singlet. The electron spectral functions are calculated in both phases. We find that while a Kondo resonance develops above the Fermi level in the singlet phase, the spectral function exhibits a low-energy spectral peak below the Fermi level in the spin doublet phase. The origin of such a ``virtual Kondo resonance'' is the existence of low-lying collective excitations in the spin-singlet sector. We discuss our results in connection to recent spectroscopic experiments on Zn doped high-Tc_c superconductors.Comment: 5 pages, 4figures, revised versio
    corecore