
Int J Adv Manuf Technol (1998) 14:85-92
© 1998 Springer-Verlag London Limited

The latematioMI Journal of

lidvanced
manufacturing
Technologu

Rough Cut Tool Path Planning for B-spline Surfaces Using
Convex Hull Boxes

Sheng H. Chuang and C. C. Pan
Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan

The objective of this paper is to present a non-uniform layered
rough cut plan for B-spline surfaces using convex hull boxes.
The tool path plan generated by this method will rapidly
remove most redundant material from stock material without
overcutting.

First, a B-spline surface is decomposed into piecewise Bezier
surfaces, of which the convex hull boxes form an approximate
model for rough cutting. Then, according to the top planes of
those convex hull boxes, the stock material is divided into
layers of different thickness. The cavity contour for each layer
is obtained using a simplified union Boolean operation on
convex hull boxes. Finally, from the top down, each layer is
processed like a 2D pocket die cavity.

The algorithm is implemented on a personal computer. It is
shown that the rough cut plan is very efficient since no
computation for solving nonlinear equations is needed, and no
overcutting occurs since B-spline surfaces are protected by the
convex hull property of Bezier surfaces.

Keywords: Approximate model; Boolean union; B-spline sur-
face; Convex hull box; Pocket machining; Rough cut planning

1. Introduction

A plan for surface rough cutting is expected to remove most
unwanted material from stock without overcutting. Flat-ended
milling cutters are the most commonly used tools for rough
cutting. Traditionally, the rough cut for a B-spline surface uses
equally spaced slicing planes, and the surface is cut into layers
of equal height [1]. Each layer is machined using the 2D
pocketing method. The intersecting contour of a slicing plane
and the surface is obtained by solving high-order nonlinear
equations using numerical methods. The numerical instability
and time-consuming problems involved remain to be solved sat-
isfactofity.

Correspondence and offprint requests to: Professor S. H. Chuang,
Department of Mechanical Engineering, Chung-Hsing University, 250
Kuo-kuang Road, Taichung, Taiwan.
Fax: 886 4 287 7170

Others use a simpler model to approximate the surface and
use the approximation model to simplify rough cut planning
[2-4]. The Z-map method and the octree method are used for
the construction of approximation models, The Z-map method
computes the z-coordinates for vertical rays from grid points
of an X-Y net [2,3]. The computation for obtaining the z-
mapped values is complex. The octree method requires contain-
ment tests between boxes and the solid formed by the surface;
such computation is not easy [4].

In this paper, an efficient method for automatic rough cut
path planning of a B-spline surface, with a geometric certainty
of no overcutting, is proposed. At the beginning, a B-spline
surface is transformed into piecewise Bezier surfaces using the
knot insertion method [5,6]. Each Bezier surface can be
contained in a box of minimal size formed by its control
points, called a convex hull box, and all boxes containing
those Bezier surfaces make up the rough cut approximation
model for the B-spline surface. After the approximation model
has been constructed, the minimum box containing the approxi-
mation model is used as the stock material for the surface cut.

Subsequently, the stock is sliced into layers of different
heights according to the top plane of the containing convex
hull box of each Bezier surface. When a layer height is too
large, the layer is recnrsively subdivided to match the required
accuracy, and when a layer height is too small, it is merged
with its neighbours to improve the cutting efficiency. After
completing the layer-dividing procedures, every layer is con-
sidered as a 2D pocket, and the tool paths can be generated
using a pocketing tool path plan. The sum of tool paths for
all layers is the total number of paths for the rough cut of a
B-spline surface.

2. Transforming a B-spline Surface into
Bezier Surfaces

In order to build the approximation model for a B-spline
surface using the convex hull property of Bezier surfaces, a
B-spline surface is transformed into piecewise Bezier surfaces.
The knot insertion method is applied to repeat the knots of a
B-spline surface and the corresponding piecewise Bezier control
points will be generated without changing the shape of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Chung Hsing University Institutional Repository

https://core.ac.uk/display/41685988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

86 S. H. Chuang and C. C. Pan

original surface [5-7]. If S(u, v) represents the position vector
of an arbitrarily selected point on a B-spline surface, for a
bicubic example with degree 3 by 3, a B-spline surface is
defined as follows [8-10]:

S(u,v) =. ~ i Ni,3(l't)Nj,3(v)PiJ
i=0 j = 0

where, Pij is a control point on the B-spline control net; the
number of control points is (m + 1) × (n + 1); N,-3(u) and
Nj,3(v) are respectively the B-spline basis functions defined in
U and V knot vector directions. The knot vectors may be
open, uniform and non-periodic which are frequently used in
free-form surface design. Such knot vectors are defined as
follows [8]:

U = {0,0,0,0,/~/4, ..., u,,,1,1,1,1}
V = {0,0,0,0,v 4, ..., vn, l , l , l ,1 }

_ /- Bezier surface

Fig, 2. Convex hull of Bezier surface.

c o n v e x ~

Fig. 3. Convex hull box.

If there are no internal knots, a B-spline basis function is
simplified as a Bernstein function and the corresponding B-
spline surface is equivalent to a Bezier surface. For an arbitrary
point on the Bezier surface, Q(u, v) is defined as follows
[10,11]:

3 3

Q(u,v) = ~ ~ Bi,3(u)Bj.3(v)Pi,i
~=0 j = 0

where, Pij is a control point on the Bezier control net; the
number of control points is 4 by 4. Bi,3(u) and Bi,3(v) are,
respectively, Bernstein functions defined in U and V knot
vector directions.

For a bicubic B-spline surface, executing knot insertion three
times for each internal knot of knot vector U, then, three times
for each internal knot of knot vector V, the control points for
the B-spline surface become the control points for piecewise
Bezier surfaces [6,12]. For a bicubic B-spline surface, as in
Fig. 1, after the transformation through knot insertion pro-
cedures, it becomes four piecewise bicubic Bezier surfaces.

D

o B-Spline control point
• Bezier control point

3. Constructing an Approximation Model

In planning a surface rough cut, a B-spline surface is replaced
with a surface approximation model, which is composed of a
number of boxes. According to this approximation model, the
stock is sliced into layers and the machining boundary is
obtained for each layer. There are two reasons for constructing
this approximation model:

1. To derive layered pocketing boundaries by a simple union
operation.

2. To avoid overcutting according to this approximation model.

In this research, the approximation model is constructed by
applying the convex hull property of Bezier surfaces. The
convex hull property of Bezier surfaces is that a Bezier surface
is contained in the minimal convex polyhedron wrapping up
its control points. As shown in Fig. 2, a Bezier surface is
wrapped in the convex polyhedron formed by its 16 control
points. Since operations on polyhedrons, such as slicing and
Boolean operations, are complex, a minimal box to contain
the convex hull is used to simplify the wrapping space. This
greatly simplifies the operations in rough cut planning (see
Fig. 3).

After transforming a B-spline surface into many piecewise
Bezier surfaces, a minimal convex hull box can be found for
every Bezier surface, as in Fig. 4. The minimum box enclosing
all convex hull boxes can be used as the stock material for

Fig. I. B-spline surface to Bezier surface. Fig. 4. Convex hull boxes and stock material,

Rough Cut Tool Path Planning 87

V7
?:-:+~ /

Fig. 7. Subdivision for over depth cut.

Fig. 5. Surface approximation model.

producing the B-spline surface. When the stock box has been
found, ever?" convex hull box is extended to the bottom of the
stock, as shown in Fig. 5. The union of all extended convex
hull boxes is the approximation model of the B-spline surface.
The approximation model will wrap the B-spline surface com-
pletely. If the rough cut plan can avoid cutting the interior of
the approximation model, the approximation model can protect
the B-spline surface from overcutting.

Although B-spline surfaces themselves have the local convex
hull property, the local convex hulls overlap considerably so
that the approximation model constructed according to this
characteristic cannot approximate a B-spline surface well. Since
the overlapping between convex hull boxes of Bezier surfaces
transformed from a B-spline surface are comparatively smaller,
the corresponding approximation model is much better than
that when directly using a B-spline model. The stock volume
will be smaller and the removed volume is larger, which means
a better cut plan is found.

4. Slicing in Non-uniform Spacing

When the approximation model is established, the top planes
of convex hull boxes are used as slicing planes to slice the
stock material, so that the pocket boundary for each layer can
be constructed. As in Fig. 6, the stock material is sliced into
layers with different thicknesses according to the top planes
of convex hull boxes. Some of the sliced layers may exceed
the maximum depth of cut or fall short of the minimum depth
of cut. For the layers exceeding the maximum depth of cut,
the cutting tool experiences too much cutting force. This causes
excessive tool wear and poor cutting results. Such layers are
subdivided to decrease layer thicknesses. When layers are
below the minimum depth of cut, the cutting efficiency is
lowered. Such layers will be merged with neighbouring layers
to increase layer thicknesses and thus to increase rough cut

/
- !

/

[

\

\

l a y e r 1
_ _ l a y e r 2
_ _ l a y e r 3

layer 4
_ _ l a y e r 5

layer 6
layer 7

layer 8

efficiency, but the merged layers should not exceed the
maximum depth of cut.

For a layer with a thickness greater than the maximum depth
of cut, the corresponding Bezier surface is subdivided by the
de Casteljau algorithm [9]. The subdivision is completed in
the following two steps:

1. Subdivide for the control points {V i/} in the v direction (or
u direction).

2. Subdivide for the newly generated control points, {~} , in
the u direction (or v direction).

A bicubic Bezier surface is thus subdivided into four in one
iteration. The convex hull box for an original Bezier surface
is replaced with four new convex hull boxes. The layer over
the maximum depth of cut is thus subdivided into several
layers, of which the depths are decreased. A result of such
subdivision is illustrated in Fig. 7.

For a layer with a thickness of less than the minimum depth
of cut, the top faces of all convex hull boxes in this layer are
elevated to the upper layer and the boxes are merged with the
boxes of the upper layer. Before the merging process proceeds,
make sure that the thickness of the resulting merged layer
does not exceed the maximum depth of cut. If it does, the
merge is cancelled. An example of the merging result is shown
in Fig. 8. If the merged layer thickness is still less than the
minimum depth of cut, the merging procedure is applied again,
until the layer thickness is between the maximum and minimum
depths of cut.

5. Finding a Pocketing Boundary for
Single Layer

After the stock has been sliced into layers, the next step is to
compute the pocket boundary for each layer. In general, a
pocket boundary is composed of one periphery with several
islands. For each layer, the stock boundary is used as the
pocket periphery and convex hull boxes are considered as
islands. The pocket boundary for a layer is composed of the
line segments obtained by using the bottom plane of the layer
intersecting the stock boundary and those convex hull boxes.

under rain. ..~:i:~i~!
depth of cut ~ ~ i ~ !

merged

Fig. 6. Non-uniform layer slicing. Fig. 8, Merging for under depth of cut.

88 S. H. Chuang and C. C. Pan

fv-pocket periphery(stock material)

~ h u l l boxes)

Fig. 9. Pocket contour before restructuring.

~-- expands 2 A r ,0utwa,rd

island unions

Fig. 10. Pocket contour after restructuring.

The pocket boundary of a layer, as shown in Fig. 9, is found
to overlap on some line segments of pocket periphery and
islands, and there are intersections and overlappings among
line segments of islands. A pocket with such structures cannot
be directly used for tool path generation, and the boundary
segments must be restructured.

To resolve the overlapping between the pocket periphery
and islands, the pocket periphery is expanded outward by a
distance, say 2.1r, where r is the tool radius. A simplified
Boolean union for islands is used to deal with the intersections
and overlappings between islands. A correct pocket structure
is shown in Fig. 10.

Boolean operations, such as union, intersection and differ-
ence, are very useful for geometric processing in solid model-
ling [13]. Fig. 11 shows how the union operation is used to
combine two 2D objects A and B. The boundary edges of A
and B are split at intersection points. After the splitting, the
boundary edges of A and B are classified into 8 categories.

A out B boundary edges of A which are outside B

B out A boundary edges of B which are outside A

A in B boundary edges of A which are inside B

B in A boundary edges of B which are inside A

A on B + boundary edges of A which overlap the boundary
of B, and the edges in A and B which have the
same direction

B on A + boundary edges of B which overlap the boundary
of A, and the edges in A and B which have the
same direction

A on B- boundary edges of A which overlap the boundary
of B, and the edges in A and B which have
opposite directions

B on A- boundary edges of B which overlap the boundary
of A, and the edges in A and B which have
opposite directions

The result of the union of objects A and B is composed of
3 categories of boundary edges. The expression is shown
as follows.

A t O B = A o u t B + B o u t A + A o n B +

To eliminate the intersections and overlappings of the rectangu-
lar island boundaries obtained from slicing, rectangular islands
are considered as 2D solid objects. Using the 2D Boolean
operation, such rectangles can be unionised to obtain the con'ect
representation structure of a pocket boundary. In order to apply
the union operation, the representation of a pocket must be
defined con'ectly and precisely. In this paper, the periphery of
a pocket is composed of a list of edges {L~,L2 L,,}. These
edges connect with one another to form a closed loop, and
the rotating direction is arbitrarily defined as counterclockwise.
On the other hand, an island boundary is also composed of a
closed edge loop, but the rotating direction is opposite to the
periphery, i.e. clockwise. The union operation of islands is
as follows:

t. Find the intersection points of edges and split the edges at
the intersection points.

2. Compute the containment values for all edges.

3. Restructure the sequences of edges and form new island
loops.

Using Fig. 9 as an example, the details of the above steps are
further described as follows.

BoutA

Bout~ IBoutA

Bo tBoutA l A U B

AoutB AonB" A~nB
AoutB I 'lAonB +

AoutB ' ~"~
Fig. 11. Union operating on objects A and B,

5.1 Find Intersection Points

In the first step of this simplified union operation, find the
edges in different loops which intersect properly and find the
intersection points. Two edges that intersect at intermediate
points, but not at end points, are called properly intersecting.
Every island loop will be selected to find intersection points
with respect to all the others. In order to reduce the computing
time, each pair of box loops is tested to determine whether
they intersect or not. If they do, find the intersecting edges in
different loops, and find the intersection points.

Rough Cut 7bol Path Planning 89

Box Intersecting Test

Let points Pl and P2 represent the lefthand bottom comer and
righthand top comer of box A and points P3 and P4 represent
the lefthand bottom comer and righthand top comer of box B.
If the coordinates x and y of points P~ and P2 of A are both
inside or both outside the coordinates of P3 and P4 of B,
boxes A and B are non-intersecting. Otherwise, boxes A and
B intersect.

Line Intersecting Test

If two boxes intersect, take an edge in one box to test
intersections with all edges in the other box. When all edges
have been tested, all intersecting lines can be found and the
intersection points can be obtained. Since the directions of
edges of boxes are either horizontal or vertical, there are three
intersecting conditions.

1. One edge is a horizontal edge and the other is vertical.
Two edges intersect if and only if the x-coordinate of the
vertical edge is between the x-coordinates of the two ends
of the horizontal edge, and the y-coordinate of the horizontal
edge is between the y-coordinates of the two ends of the
vertical edge.

2. Both edges are horizontal. They intersect if and only if
both edges have the same y-coordinates, and the x-coordinate
of one end or the x coordinates of both ends of an edge
are between the x-coordinates of the two ends of the
other edge.

3. Both edges arc vertical. They intersect if and only if both
edges have the same x-coordinates, and the y-coordinate of
one end or y-coordinates of both ends of an edge are
between the y-coordinates of the two ends of the other edge.

When two edges are found to be intersecting, the coordinates
of the intersecting point are the intersecting combinations of
the coordinates of the four endpoints. Fig. 12 shows the results
after obtaining the intersection points for Fig. 9. After the
intersecting points have been found, the colTesponding edges
are split at the intersection points, as in Fig. 13, where the
splitting edges have the same directions as the original edges.

5.2 Compute Containment Values

After intersection points have been found and edges split, the
containment relationships of edges with respect to island loops
are assigned containment values, which are defined as follows.

m

e c t i o n point

Fig. 13. Split line segments.

OUT indicates that the given edge is outside an island
loop, and the containment value is assigned the
value "0".

ON + indicates that the edge overlaps a part of an island
loop, that both overlapping edges have the same
direction, and the edge is assigned the value "1".

O N indicates that the edge overlaps a part of an island
loop, that two overlapping edges have opposite
directions, and the edge is assigned the value "2".

IN indicates that the given edge is inside an island
loop, and the edge is assigned the value "3".

In this research, the computation of containment values can be
simplified since all island loops are rectangular boxes, and
edges are either horizontal or vertical. The containment value
of an edge can be obtained from the relationship of the
midpoint position of the edge with respect to a box loop.

1. If the midpoint of an edge is outside a box loop, the edge
is outside the box loop and the containment value of the
edge is OUT(0) (see Fig. 14(a)).

2. If the midpoint of an edge is on an edge of a box loop,
the edge overlaps parts of the box loop. If the edge has
the same direction as the overlapped edge, the containment
value for this edge is ON+(1); if the edge has an opposite
direction to the overlapped edge, the containment value for
this edge is ON-(2) (see Fig. 14(b)).

3. If the midpoint of an edge is inside a box loop, the edge
is inside the box loop and the containment value of the
edge is IN(3) (see Fig. 14(c)).

After the procedures for the classification and computation of
containment values are completed, the containment values for
a number of box loops, as in Fig. 15, are computed by the
following procedure.

Initially, all edges of all boxes ate given containment values
of zero. All edges of a box loop are taken to compute
containment values with respect to each of the other boxes.

(a) (b) (c)

 ot_ - "1 1
Fig. 12. Find intersection points. Fig. 14. Find containment values.

90 S. H. Chuang and (2. C Pan

©
Fig. 15. Computing containment values.

72

! t
Fig. 17. Islands with one point contacts.

i

An old containment value is replaced with a new containment
value if and only if a newer one is greater than an older one.
The resulting value is the correct containment value for such
an edge in the locating layer.

Figure 15 shows the results of Fig. 13 after the containment
value for every edge has been found. It is found that the edges
with containment values 2 and 3 can be deleted from an island
structure. Where more than one edge with a value of 1 exist,
only one of them is retained, and all the other overlapping
edges are deleted. With this deletion procedure, the left edges
with 0s and ls are put into an edge stack for finding new
island loops.

5.3 Forming New Island Loops

In forming a new loop, start by obtaining a starting edge from
the edge stack and sequentially find each next connecting
edge. A new loop is formed when the end edge meets the
starting edge.

As shown in Fig. 16, there appears more than one next
connecting edge. If such a condition occurs, based on the
direction of the current edge L1, the edge with maximum
relative rotation angle is selected as the next edge from among
the connecting edges. The relative angle is defined as positive
for counterclockwise and negative for clockwise directions.

There are some island areas having one point contact (see
Fig. 17). The reason for selecting the maximum angle is to
make those islands with one point contact form a single loop,
not to break into several loops.

After a new loop is found, the direction for the loop has to
be determined. Newell 's method is used to derive the loop
direction for a sequence of loop vertices [14]. After completing
the above restructuring, the case shown in Fig. t5 results in
the correct pocket structure as in Fig. t0.

¢ , = o ~

d~= + 90° ~ ~ ~ = - 91~

:urrent edge 1-1

Fig. 16. Edge with more than one next connecting edge.

Fig. 18. Continuous zigzag cutting path.

6. Path Planning for Layer Pocketing

Since the representation of the cutting boundary for each
pocketing layer is established, current pocketing methods can
be used for tool path planning of each layer. Among the
current available pocketing methods, continuous zigzag, as in
Fig. t8, is selected for rough cutting in this research, since it
has the advantages of easy path generation and very few
undercutting problems [15].

For a B-spline surface, pocketing paths are generated for
each layer from the top down to the bottom. The combination
of paths for all layers is then the paths for the rough cutting
of the B-spline surfaces.

7. Implementation and Results

The proposed method for B-spline rough cutting has been
implemented in Visual C + + on Windows on a PC. The
system infrastructure is shown in Fig. 19, where the surface
editing and rough cut planning are two major subsystems.

cutting conditions:
1. tool radius |
2. tool overlapping distance I
3. max. depth of cut |
4. rnin. depth of cut Q

Fig. 19. Infrastructure of rough-cut system.

There are 3 major functions in the surface editing and
modifying subsystem:

1. Read in the data of a control net and construct a B-spline
surface model.

2. Transform the B-spline surface into piecewise Bezier sur-
faces and display the surface on a computer screen.

3. Move control points and modify the surface shape until the
shape is satisfactory.

In this editing subsystem, a plane model for a control net has
been used to help select control points in order that the points
on the screen can be clearly distinguished and the topological
relationships between control points are explicitly displayed
[16].

The rough cut planning subsystem has two major functions:

1. Construct the surface approximation model according to
those piecewise Bezier surfaces transformed from the B-
spline surface.

2. According to the user-provided cutting conditions, the toot
paths are generated through layer slicing and structuring of
pocketing boundaries.

The tool paths are further simulated for overcut checking on
a computer. The generated CL data can be transformed into
NC code and transferred to a CNC machine for actual cutting.

Parts of the simulation for the rough cut of a water tap is
shown in Fig. 20. The cutting conditions are: tool radius
= 6 mm, overlapping = 0 ram, maximum depth of cut = 2 ram,
minimum depth of cut = 1 ram. The tool paths for layers 1,
2 and 3 of 15 layers are shown in Fig. 20. The cutting result
using the stock material of acrylic is shown in Fig. 21.

In rough cut planning, cutting efficiency can be increased
by changing the following settings:

1. Use a larger radius of cutter.

2. Increase the maximum depth of cut.

3. Increase the minimum depth of cut.

The total distance of tool paths for each layer will be reduced
by using a larger cutter radius, but some narrow regions may

Rough Cut Tool Path Planning 91

Fig. 21. Result of rough cut for a water tap.

restrict the cutter from entering, resulting in larger undercuts.
By increasing the maximum depth of cut, the number of layer
subdivisions will be reduced, By increasing the minimum depth
of cut, the number of merges will be increased. Both increases
will reduce the number of cutting layers, but at the expense
of enlarging the undercutting volume.

8. Conclusions and Future Work

In this research, an efficient and robust rough cut planning
method is proposed. The method uses non-uniform layered
subdivisions with convex hull boxes and a simple union oper-
ation to compute the pocketing boundaries for cutting layers.
Geometrically, the generated paths cml avoid overcutting com-
pletely and remove most unwanted material volume efficiently.
Computationally, the search for surface and slicing plane inter-
sections required in most current methods has been avoided,
and thus the method reduces the problems of numerical insta-
bility and the errors in obtaining pocketing boundaries. As
usual, path planning by this method, which is based on 3-axis
NC machines, cannot reach side hollows.

There are three directions for furore work:

1. Generate tool paths for multi-patched B-spline surfaces
based on this method.

2. Determine the cutter radii for each layer automatically and
optimise tool changes such that rough cut efficiency can
be optimised.

3. Investigate the toot path planning for accurate and efficient
finish cut.

With this work, it is expected that automatic and efficient
production of free-form surfaces can be achieved in the near
future.

Acknowledgement

The authors are indebted to the Metal Industrial Research and
Development Center, Taiwan for its support under Project
84EC2A 15094.

Fig. 20, Rough cut for a water tap. (a) Surface shape, (b) Tool path
of first layer. (c) Tool path of second layer. (d) Tool path of third layer.

References

I. W. Chungwatana, A. C. Lin and W. F. Lu, "'Automated process
planning and numerical control code generation for mechanical
parts with sculptured surfaces", The Second International

92 S. H. Chuang and C. C. Pan

Conference on Automation Technology, Vol. 2, pp. 171-178, July
1992.

2. R. B. Jerard and R. L. Drysdake, "Geometric simulation of
numerical control machining", Proceedings ASME International
Computers in Engineering Conference, pp. 129-136, 1988.

3. C. F. You and C. H. Chu, "NC rough cut machining for solid
models", The Second International Conference on Automation
Technology, vol. 2, pp. 75-82, July 1992.

4. K. Lee, T. J. Kim and S. E. Hong, "Generation of tool path with
selection of proper tools for rough cutting process", Computer
Aided Design, 26 (11), pp. 822-831, November 1994.

5. W. Bochm, "Inserting new knots into B-Spline curves", Computer
Aided Design, 12 (4), pp. 199-201, July 1980.

6. W. Boehm, "Generating the Bezier points of B-Spline curves and
surfaces", Computer Aided Design, 13 (6), pp. 365-366, Nov-
ember 1981.

7. W. Boehm and H. Prautzsch, "The insertion algorithm", Computer
Aided Design, 17 (2), pp. 58-59, March 1985.

8. L. Piegl and W. Tiller, "Curve and surface construction using

rational B-Splines", Computer Aided Design, 19 (9), pp. 485-498,
November 1987.

9. J. Farin, Curves and Surfaces for Computer Aided Geometric
Design, Academic Press, 1990.

10. D. F. Rogers and J. A. Adams, Mathematical Elements for Com-
puter Graphics, McGraw-Hill Publishing Company, 1990.

i I. B. K. Choi, Surface Modeling for CAD/CAM, Elsevier, 1991.
I2. N. Anantakrishnan and L. Piegl, "Integer subdivision algorithm

for rendering NURBS curves", The Visual Computer, 8 (3),
pp. t49-161, 1992.

13. M. Mfintyl~i, An Introduction to Solid Modeling, Computer Science
Press, 1987.

14. I. E. Sutherland, R. F. Sproull and R. A. Schumacker, '% charac-
terization of ten hidden-surface algorithms", ACM Computing
Surveys, 6, pp. t-55, March 1974,

15. C. S. Yang, "Tool path generation of pockets with islands", MS
Thesis, National Chung-Hsing University, Taiwan, June 1993.

16. C. H. Lin, "Computer aided design using a plane model", MS
Thesis, National Chung-Hsing University, Taiwan, July 1994.

