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The objective of this paper is to present a non-uniform layered 
rough cut plan for B-spline surfaces using convex hull boxes. 
The tool path plan generated by this method will rapidly 
remove most redundant material from stock material without 
overcutting. 

First, a B-spline surface is decomposed into piecewise Bezier 
surfaces, of  which the convex hull boxes form an approximate 
model for rough cutting. Then, according to the top planes of 
those convex hull boxes, the stock material is divided into 
layers of  different thickness. The cavity contour for each layer 
is obtained using a simplified union Boolean operation on 
convex hull boxes. Finally, from the top down, each layer is 
processed like a 2D pocket die cavity. 

The algorithm is implemented on a personal computer. It is 
shown that the rough cut plan is very efficient since no 
computation for  solving nonlinear equations is needed, and no 
overcutting occurs since B-spline surfaces are protected by the 
convex hull property of Bezier surfaces. 

Keywords:  Approximate model; Boolean union; B-spline sur- 
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1. Introduction 

A plan for surface rough cutting is expected to remove most 
unwanted material from stock without overcutting. Flat-ended 
milling cutters are the most commonly used tools for rough 
cutting. Traditionally, the rough cut for a B-spline surface uses 
equally spaced slicing planes, and the surface is cut into layers 
of equal height [1]. Each layer is machined using the 2D 
pocketing method. The intersecting contour of a slicing plane 
and the surface is obtained by solving high-order nonlinear 
equations using numerical methods. The numerical instability 
and time-consuming problems involved remain to be solved sat- 
isfactofity. 

Correspondence and offprint requests to: Professor S. H. Chuang, 
Department of Mechanical Engineering, Chung-Hsing University, 250 
Kuo-kuang Road, Taichung, Taiwan. 
Fax: 886 4 287 7170 

Others use a simpler model to approximate the surface and 
use the approximation model to simplify rough cut planning 
[2-4]. The Z-map method and the octree method are used for 
the construction of approximation models, The Z-map method 
computes the z-coordinates for vertical rays from grid points 
of an X-Y net [2,3]. The computation for obtaining the z- 
mapped values is complex. The octree method requires contain- 
ment tests between boxes and the solid formed by the surface; 
such computation is not easy [4]. 

In this paper, an efficient method for automatic rough cut 
path planning of a B-spline surface, with a geometric certainty 
of no overcutting, is proposed. At the beginning, a B-spline 
surface is transformed into piecewise Bezier surfaces using the 
knot insertion method [5,6]. Each Bezier surface can be 
contained in a box of minimal size formed by its control 
points, called a convex hull box, and all boxes containing 
those Bezier surfaces make up the rough cut approximation 
model for the B-spline surface. After the approximation model 
has been constructed, the minimum box containing the approxi- 
mation model is used as the stock material for the surface cut. 

Subsequently, the stock is sliced into layers of different 
heights according to the top plane of the containing convex 
hull box of each Bezier surface. When a layer height is too 
large, the layer is recnrsively subdivided to match the required 
accuracy, and when a layer height is too small, it is merged 
with its neighbours to improve the cutting efficiency. After 
completing the layer-dividing procedures, every layer is con- 
sidered as a 2D pocket, and the tool paths can be generated 
using a pocketing tool path plan. The sum of tool paths for 
all layers is the total number of paths for the rough cut of a 
B-spline surface. 

2. Transforming a B-spline Surface into 
Bezier Surfaces 

In order to build the approximation model for a B-spline 
surface using the convex hull property of Bezier surfaces, a 
B-spline surface is transformed into piecewise Bezier surfaces. 
The knot insertion method is applied to repeat the knots of a 
B-spline surface and the corresponding piecewise Bezier control 
points will be generated without changing the shape of the 
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original surface [5-7]. If S(u, v) represents the position vector 
of an arbitrarily selected point on a B-spline surface, for a 
bicubic example with degree 3 by 3, a B-spline surface is 
defined as follows [8-10]: 

S(u,v) =. ~ i Ni,3(l't)Nj,3(v)PiJ 
i=0 j = 0  

where, Pij is a control point on the B-spline control net; the 
number of control points is (m + 1) × (n + 1); N,-3(u) and 
Nj,3(v) are respectively the B-spline basis functions defined in 
U and V knot vector directions. The knot vectors may be 
open, uniform and non-periodic which are frequently used in 
free-form surface design. Such knot vectors are defined as 
follows [8]: 

U = {0,0,0,0,/~/4, ..., u,,,1,1,1,1} 
V = {0,0,0,0,v 4, ..., vn, l , l , l ,1  } 

_ /- Bezier surface 

Fig, 2. Convex hull of Bezier surface. 

c o n v e x ~  

Fig. 3. Convex hull box. 

If there are no internal knots, a B-spline basis function is 
simplified as a Bernstein function and the corresponding B- 
spline surface is equivalent to a Bezier surface. For an arbitrary 
point on the Bezier surface, Q(u, v) is defined as follows 
[10,11]: 

3 3 

Q(u,v) = ~ ~ Bi,3(u)Bj.3(v)Pi,i 
~=0 j = 0  

where, Pij is a control point on the Bezier control net; the 
number of control points is 4 by 4. Bi,3(u) and Bi,3(v) are, 
respectively, Bernstein functions defined in U and V knot 
vector directions. 

For a bicubic B-spline surface, executing knot insertion three 
times for each internal knot of knot vector U, then, three times 
for each internal knot of knot vector V, the control points for 
the B-spline surface become the control points for piecewise 
Bezier surfaces [6,12]. For a bicubic B-spline surface, as in 
Fig. 1, after the transformation through knot insertion pro- 
cedures, it becomes four piecewise bicubic Bezier surfaces. 

D 

o B-Spline control point 
• Bezier control point 

3. Constructing an Approximation Model 

In planning a surface rough cut, a B-spline surface is replaced 
with a surface approximation model, which is composed of a 
number of boxes. According to this approximation model, the 
stock is sliced into layers and the machining boundary is 
obtained for each layer. There are two reasons for constructing 
this approximation model: 

1. To derive layered pocketing boundaries by a simple union 
operation. 

2. To avoid overcutting according to this approximation model. 

In this research, the approximation model is constructed by 
applying the convex hull property of Bezier surfaces. The 
convex hull property of Bezier surfaces is that a Bezier surface 
is contained in the minimal convex polyhedron wrapping up 
its control points. As shown in Fig. 2, a Bezier surface is 
wrapped in the convex polyhedron formed by its 16 control 
points. Since operations on polyhedrons, such as slicing and 
Boolean operations, are complex, a minimal box to contain 
the convex hull is used to simplify the wrapping space. This 
greatly simplifies the operations in rough cut planning (see 
Fig. 3). 

After transforming a B-spline surface into many piecewise 
Bezier surfaces, a minimal convex hull box can be found for 
every Bezier surface, as in Fig. 4. The minimum box enclosing 
all convex hull boxes can be used as the stock material for 

Fig. I. B-spline surface to Bezier surface. Fig. 4. Convex hull boxes and stock material, 
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Fig. 7. Subdivision for over depth cut. 

Fig. 5. Surface approximation model. 

producing the B-spline surface. When the stock box has been 
found, ever?" convex hull box is extended to the bottom of the 
stock, as shown in Fig. 5. The union of all extended convex 
hull boxes is the approximation model of the B-spline surface. 
The approximation model will wrap the B-spline surface com- 
pletely. If the rough cut plan can avoid cutting the interior of 
the approximation model, the approximation model can protect 
the B-spline surface from overcutting. 

Although B-spline surfaces themselves have the local convex 
hull property, the local convex hulls overlap considerably so 
that the approximation model constructed according to this 
characteristic cannot approximate a B-spline surface well. Since 
the overlapping between convex hull boxes of Bezier surfaces 
transformed from a B-spline surface are comparatively smaller, 
the corresponding approximation model is much better than 
that when directly using a B-spline model. The stock volume 
will be smaller and the removed volume is larger, which means 
a better cut plan is found. 

4. Slicing in Non-uniform Spacing 

When the approximation model is established, the top planes 
of convex hull boxes are used as slicing planes to slice the 
stock material, so that the pocket boundary for each layer can 
be constructed. As in Fig. 6, the stock material is sliced into 
layers with different thicknesses according to the top planes 
of convex hull boxes. Some of the sliced layers may exceed 
the maximum depth of cut or fall short of the minimum depth 
of cut. For the layers exceeding the maximum depth of cut, 
the cutting tool experiences too much cutting force. This causes 
excessive tool wear and poor cutting results. Such layers are 
subdivided to decrease layer thicknesses. When layers are 
below the minimum depth of cut, the cutting efficiency is 
lowered. Such layers will be merged with neighbouring layers 
to increase layer thicknesses and thus to increase rough cut 
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efficiency, but the merged layers should not exceed the 
maximum depth of cut. 

For a layer with a thickness greater than the maximum depth 
of cut, the corresponding Bezier surface is subdivided by the 
de Casteljau algorithm [9]. The subdivision is completed in 
the following two steps: 

1. Subdivide for the control points {V i/} in the v direction (or 
u direction). 

2. Subdivide for the newly generated control points, {~} ,  in 
the u direction (or v direction). 

A bicubic Bezier surface is thus subdivided into four in one 
iteration. The convex hull box for an original Bezier surface 
is replaced with four new convex hull boxes. The layer over 
the maximum depth of cut is thus subdivided into several 
layers, of which the depths are decreased. A result of such 
subdivision is illustrated in Fig. 7. 

For a layer with a thickness of less than the minimum depth 
of cut, the top faces of all convex hull boxes in this layer are 
elevated to the upper layer and the boxes are merged with the 
boxes of the upper layer. Before the merging process proceeds, 
make sure that the thickness of the resulting merged layer 
does not exceed the maximum depth of cut. If it does, the 
merge is cancelled. An example of the merging result is shown 
in Fig. 8. If the merged layer thickness is still less than the 
minimum depth of cut, the merging procedure is applied again, 
until the layer thickness is between the maximum and minimum 
depths of cut. 

5. Finding a Pocketing Boundary for 
Single Layer 

After the stock has been sliced into layers, the next step is to 
compute the pocket boundary for each layer. In general, a 
pocket boundary is composed of one periphery with several 
islands. For each layer, the stock boundary is used as the 
pocket periphery and convex hull boxes are considered as 
islands. The pocket boundary for a layer is composed of the 
line segments obtained by using the bottom plane of the layer 
intersecting the stock boundary and those convex hull boxes. 

under rain. ..~:i:~i~! 
depth of cut ~ ~ i ~ !  

merged 

Fig. 6. Non-uniform layer slicing. Fig. 8, Merging for under depth of cut. 
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fv-pocket periphery(stock material) 

~ h u l l  boxes) 

Fig. 9. Pocket contour before restructuring. 

~-- expands 2 A r ,0utwa,rd 

island unions 

Fig. 10. Pocket contour after restructuring. 

The pocket boundary of a layer, as shown in Fig. 9, is found 
to overlap on some line segments of pocket periphery and 
islands, and there are intersections and overlappings among 
line segments of islands. A pocket with such structures cannot 
be directly used for tool path generation, and the boundary 
segments must be restructured. 

To resolve the overlapping between the pocket periphery 
and islands, the pocket periphery is expanded outward by a 
distance, say 2.1r, where r is the tool radius. A simplified 
Boolean union for islands is used to deal with the intersections 
and overlappings between islands. A correct pocket structure 
is shown in Fig. 10. 

Boolean operations, such as union, intersection and differ- 
ence, are very useful for geometric processing in solid model- 
ling [13]. Fig. 11 shows how the union operation is used to 
combine two 2D objects A and B. The boundary edges of A 
and B are split at intersection points. After the splitting, the 
boundary edges of A and B are classified into 8 categories. 

A out B boundary edges of A which are outside B 

B out A boundary edges of B which are outside A 

A in B boundary edges of A which are inside B 

B in A boundary edges of B which are inside A 

A on B + boundary edges of A which overlap the boundary 
of B, and the edges in A and B which have the 
same direction 

B on A + boundary edges of B which overlap the boundary 
of A, and the edges in A and B which have the 
same direction 

A on B- boundary edges of A which overlap the boundary 
of B, and the edges in A and B which have 
opposite directions 

B on A-  boundary edges of B which overlap the boundary 
of A, and the edges in A and B which have 
opposite directions 

The result of the union of objects A and B is composed of 
3 categories of boundary edges. The expression is shown 
as follows. 

A t O B  = A o u t B  + B o u t A  + A o n B  + 

To eliminate the intersections and overlappings of the rectangu- 
lar island boundaries obtained from slicing, rectangular islands 
are considered as 2D solid objects. Using the 2D Boolean 
operation, such rectangles can be unionised to obtain the con'ect 
representation structure of a pocket boundary. In order to apply 
the union operation, the representation of a pocket must be 
defined con'ectly and precisely. In this paper, the periphery of 
a pocket is composed of a list of edges {L~,L2 . . . . .  L,,}. These 
edges connect with one another to form a closed loop, and 
the rotating direction is arbitrarily defined as counterclockwise. 
On the other hand, an island boundary is also composed of a 
closed edge loop, but the rotating direction is opposite to the 
periphery, i.e. clockwise. The union operation of islands is 
as follows: 

t. Find the intersection points of edges and split the edges at 
the intersection points. 

2. Compute the containment values for all edges. 

3. Restructure the sequences of edges and form new island 
loops. 

Using Fig. 9 as an example, the details of the above steps are 
further described as follows. 

BoutA 

Bout~ IBoutA 

Bo tBoutA l A U B 

AoutB AonB" A~nB 
AoutB I 'lAonB + 

AoutB ' ~"~ 
Fig. 11. Union operating on objects A and B, 

5.1 Find Intersection Points 

In the first step of this simplified union operation, find the 
edges in different loops which intersect properly and find the 
intersection points. Two edges that intersect at intermediate 
points, but not at end points, are called properly intersecting. 
Every island loop will be selected to find intersection points 
with respect to all the others. In order to reduce the computing 
time, each pair of box loops is tested to determine whether 
they intersect or not. If they do, find the intersecting edges in 
different loops, and find the intersection points. 
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Box Intersecting Test 

Let points Pl and P2 represent the lefthand bottom comer and 
righthand top comer of box A and points P3 and P4 represent 
the lefthand bottom comer and righthand top comer of box B. 
If the coordinates x and y of points P~ and P2 of A are both 
inside or both outside the coordinates of P3 and P4 of B, 
boxes A and B are non-intersecting. Otherwise, boxes A and 
B intersect. 

Line Intersecting Test 

If two boxes intersect, take an edge in one box to test 
intersections with all edges in the other box. When all edges 
have been tested, all intersecting lines can be found and the 
intersection points can be obtained. Since the directions of 
edges of boxes are either horizontal or vertical, there are three 
intersecting conditions. 

1. One edge is a horizontal edge and the other is vertical. 
Two edges intersect if and only if the x-coordinate of the 
vertical edge is between the x-coordinates of the two ends 
of the horizontal edge, and the y-coordinate of the horizontal 
edge is between the y-coordinates of the two ends of the 
vertical edge. 

2. Both edges are horizontal. They intersect if and only if 
both edges have the same y-coordinates, and the x-coordinate 
of one end or the x coordinates of both ends of an edge 
are between the x-coordinates of the two ends of the 
other edge. 

3. Both edges arc vertical. They intersect if and only if both 
edges have the same x-coordinates, and the y-coordinate of 
one end or y-coordinates of both ends of an edge are 
between the y-coordinates of the two ends of the other edge. 

When two edges are found to be intersecting, the coordinates 
of the intersecting point are the intersecting combinations of 
the coordinates of the four endpoints. Fig. 12 shows the results 
after obtaining the intersection points for Fig. 9. After the 
intersecting points have been found, the colTesponding edges 
are split at the intersection points, as in Fig. 13, where the 
splitting edges have the same directions as the original edges. 

5.2 Compute  Containment  Values 

After intersection points have been found and edges split, the 
containment relationships of edges with respect to island loops 
are assigned containment values, which are defined as follows. 

m 

e c t i o n  point 

Fig. 13. Split line segments. 

OUT indicates that the given edge is outside an island 
loop, and the containment value is assigned the 
value "0". 

ON + indicates that the edge overlaps a part of an island 
loop, that both overlapping edges have the same 
direction, and the edge is assigned the value "1". 

O N  indicates that the edge overlaps a part of an island 
loop, that two overlapping edges have opposite 
directions, and the edge is assigned the value "2". 

IN indicates that the given edge is inside an island 
loop, and the edge is assigned the value "3". 

In this research, the computation of containment values can be 
simplified since all island loops are rectangular boxes, and 
edges are either horizontal or vertical. The containment value 
of an edge can be obtained from the relationship of the 
midpoint position of the edge with respect to a box loop. 

1. If the midpoint of an edge is outside a box loop, the edge 
is outside the box loop and the containment value of the 
edge is OUT(0) (see Fig. 14(a)). 

2. If the midpoint of an edge is on an edge of a box loop, 
the edge overlaps parts of the box loop. If the edge has 
the same direction as the overlapped edge, the containment 
value for this edge is ON+(1); if the edge has an opposite 
direction to the overlapped edge, the containment value for 
this edge is ON-(2) (see Fig. 14(b)). 

3. If the midpoint of an edge is inside a box loop, the edge 
is inside the box loop and the containment value of the 
edge is IN(3) (see Fig. 14(c)). 

After the procedures for the classification and computation of 
containment values are completed, the containment values for 
a number of box loops, as in Fig. 15, are computed by the 
following procedure. 

Initially, all edges of all boxes ate given containment values 
of zero. All edges of a box loop are taken to compute 
containment values with respect to each of the other boxes. 

(a) .... (b) (c) 

 ot_ - "1 1 
Fig. 12. Find intersection points. Fig. 14. Find containment values. 
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© 
Fig. 15. Computing containment values. 

72 

! t  
Fig. 17. Islands with one point contacts. 

i 

An old containment value is replaced with a new containment 
value if and only if a newer one is greater than an older one. 
The resulting value is the correct containment value for such 
an edge in the locating layer. 

Figure 15 shows the results of Fig. 13 after the containment 
value for every edge has been found. It is found that the edges 
with containment values 2 and 3 can be deleted from an island 
structure. Where more than one edge with a value of 1 exist, 
only one of them is retained, and all the other overlapping 
edges are deleted. With this deletion procedure, the left edges 
with 0s and ls are put into an edge stack for finding new 
island loops. 

5.3 Forming New Island Loops 

In forming a new loop, start by obtaining a starting edge from 
the edge stack and sequentially find each next connecting 
edge. A new loop is formed when the end edge meets the 
starting edge. 

As shown in Fig. 16, there appears more than one next 
connecting edge. If such a condition occurs, based on the 
direction of the current edge L1, the edge with maximum 
relative rotation angle is selected as the next edge from among 
the connecting edges. The relative angle is defined as positive 
for counterclockwise and negative for clockwise directions. 

There are some island areas having one point contact (see 
Fig. 17). The reason for selecting the maximum angle is to 
make those islands with one point contact form a single loop, 
not to break into several loops. 

After a new loop is found, the direction for the loop has to 
be determined. Newell 's method is used to derive the loop 
direction for a sequence of loop vertices [14]. After completing 
the above restructuring, the case shown in Fig. t5 results in 
the correct pocket structure as in Fig. t0. 

¢ , = o  ~ 

d~= + 90° ~ ~ ~ = -  91~ 

:urrent edge 1-1 

Fig. 16. Edge with more than one next connecting edge. 

Fig. 18. Continuous zigzag cutting path. 

6. Path Planning for Layer Pocketing 

Since the representation of the cutting boundary for each 
pocketing layer is established, current pocketing methods can 
be used for tool path planning of each layer. Among the 
current available pocketing methods, continuous zigzag, as in 
Fig. t8, is selected for rough cutting in this research, since it 
has the advantages of easy path generation and very few 
undercutting problems [15]. 

For a B-spline surface, pocketing paths are generated for 
each layer from the top down to the bottom. The combination 
of paths for all layers is then the paths for the rough cutting 
of the B-spline surfaces. 

7. Implementation and Results 

The proposed method for B-spline rough cutting has been 
implemented in Visual C + +  on Windows on a PC. The 
system infrastructure is shown in Fig. 19, where the surface 
editing and rough cut planning are two major subsystems. 

cutting conditions: 
1. tool radius | 
2. tool overlapping distance I 
3. max. depth of cut | 
4. rnin. depth of cut Q 

Fig. 19. Infrastructure of rough-cut system. 



There are 3 major functions in the surface editing and 
modifying subsystem: 

1. Read in the data of a control net and construct a B-spline 
surface model. 

2. Transform the B-spline surface into piecewise Bezier sur- 
faces and display the surface on a computer screen. 

3. Move control points and modify the surface shape until the 
shape is satisfactory. 

In this editing subsystem, a plane model for a control net has 
been used to help select control points in order that the points 
on the screen can be clearly distinguished and the topological 
relationships between control points are explicitly displayed 
[16]. 

The rough cut planning subsystem has two major functions: 

1. Construct the surface approximation model according to 
those piecewise Bezier surfaces transformed from the B- 
spline surface. 

2. According to the user-provided cutting conditions, the toot 
paths are generated through layer slicing and structuring of 
pocketing boundaries. 

The tool paths are further simulated for overcut checking on 
a computer. The generated CL data can be transformed into 
NC code and transferred to a CNC machine for actual cutting. 

Parts of the simulation for the rough cut of a water tap is 
shown in Fig. 20. The cutting conditions are: tool radius 
= 6 mm, overlapping = 0 ram, maximum depth of cut = 2 ram, 
minimum depth of cut = 1 ram. The tool paths for layers 1, 
2 and 3 of 15 layers are shown in Fig. 20. The cutting result 
using the stock material of acrylic is shown in Fig. 21. 

In rough cut planning, cutting efficiency can be increased 
by changing the following settings: 

1. Use a larger radius of cutter. 

2. Increase the maximum depth of cut. 

3. Increase the minimum depth of cut. 

The total distance of tool paths for each layer will be reduced 
by using a larger cutter radius, but some narrow regions may 
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Fig. 21. Result of rough cut for a water tap. 

restrict the cutter from entering, resulting in larger undercuts. 
By increasing the maximum depth of cut, the number of layer 
subdivisions will be reduced, By increasing the minimum depth 
of cut, the number of merges will be increased. Both increases 
will reduce the number of cutting layers, but at the expense 
of enlarging the undercutting volume. 

8. Conclusions and Future Work 

In this research, an efficient and robust rough cut planning 
method is proposed. The method uses non-uniform layered 
subdivisions with convex hull boxes and a simple union oper- 
ation to compute the pocketing boundaries for cutting layers. 
Geometrically, the generated paths cml avoid overcutting com- 
pletely and remove most unwanted material volume efficiently. 
Computationally, the search for surface and slicing plane inter- 
sections required in most current methods has been avoided, 
and thus the method reduces the problems of numerical insta- 
bility and the errors in obtaining pocketing boundaries. As 
usual, path planning by this method, which is based on 3-axis 
NC machines, cannot reach side hollows. 

There are three directions for furore work: 

1. Generate tool paths for multi-patched B-spline surfaces 
based on this method. 

2. Determine the cutter radii for each layer automatically and 
optimise tool changes such that rough cut efficiency can 
be optimised. 

3. Investigate the toot path planning for accurate and efficient 
finish cut. 

With this work, it is expected that automatic and efficient 
production of free-form surfaces can be achieved in the near 
future. 
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Fig. 20, Rough cut for a water tap. (a) Surface shape, (b) Tool path 
of first layer. (c) Tool path of second layer. (d) Tool path of third layer. 
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