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Abstract

One develops ab initio the theory of rational/birational maps over reduced, but not necessarily irreducible,
projective varieties in arbitrary characteristic. A virtual numerical invariant of a rational map is introduced,
called the Jacobian dual rank. It is proved that a rational map in this general setup is birational if and only
if the Jacobian dual rank is well defined and attains its maximal possible value. Even in the “classical”
case where the source variety is irreducible there is some gain for this invariant over the degree of the
map because, on one hand, it relates naturally to constructs in commutative algebra and, on the other hand,
is effectively computable. Applications are given to results only known so far in characteristic zero. One
curious byproduct is an alternative approach to deal with the result of Dolgachev concerning the degree of
a plane polar Cremona map.
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1. Introduction

A rational map F : P
n ��� P

m between projective spaces is defined by m + 1 forms f =
{f0, . . . fm} of the same degree in n + 1 variables not all vanishing. The idea of looking at the
syzygies of the forms f goes back to the work of Hulek, Katz and Schreyer [6] in the case where
m = n, as a method of obtaining sufficient conditions for F to be a Cremona map. In [8] this
method has been developed to a greater extent when m � n. Still more recently, the present third
author pushed the method further to the study of general rational maps between two integral pro-
jective schemes in arbitrary characteristic by an extended ideal-theoretic method emphasizing
the role of the Rees algebra associated to the ideal generated by f [9].

Although the general results were characteristic-free, some particular questions remained a
challenge in positive characteristic (but see [16] for the case of rational maps defined by mono-
mials). Even in characteristic zero a few issues were left answered in these papers.

The goal of this work is both a generalization and a great simplification of the basic theory of
rational maps in arbitrary characteristic. We consider rational maps defined on reduced, but not
necessarily, irreducible projective varieties. Though usually thought as a trivial extension from
the case where the source is integral, to establish it on firm ground requires non-trivial proofs on
several passages. Moreover, a bona fide generalization ought to work well through the various
versions of the notion of birationality. In order to proceed in a rigorous way we found it essential
to define everything ab initio, so to avoid often inevitable hand waving from the integrality habits.

The simplification comes about by showing that birationality is controlled by the behavior of a
unique (virtual) numerical invariant – called the Jacobian dual rank of a rational map. “Virtual”
refers to the fact that it may not be well defined in general – as is the case of the rank of a
matrix over an arbitrary reduced ring. Nevertheless, it will be well defined if the rational map is
birational onto its image no matter how badly behaved is the target of the map.

True enough, the classical theory also depends only on the degree of the rational map. How-
ever, the latter is in full control only in the integral case. Moreover, in positive characteristic
one treats the inseparability degree apart from the main stream of the natural ideas in birational
theory. The new invariant introduced here looks more intrinsic and makes no explicit reference
to inseparability. The hidden reason is that the Jacobian dual rank appeals to just a subset of the
defining equations of a suitable blow-up which are linear in the target variables, thus bypass-
ing the characteristic effect. Accordingly, all results throughout the paper, including the main
criterion and the applications, will be characteristic-free.

Finally, the Jacobian dual rank is straightforwardly effectively computable in the usual im-
plementation of the Gröbner basis algorithm, an appreciable advantage over the field degree. In
addition, the invariant calls attention to several aspects of the theory of Rees algebras and base
ideals of maps, a trend sufficiently shown in many modern accounts (see, e.g., [2,5–7]).

The paper is divided in two sections.
The first section hinges on the needed background to state the general criterion of birationality.

In the initial subsections we develop the ground material on rational and birational maps on
a reduced source. Our approach is entirely algebraic, but we mention the transcription to the
geometric side. A degree of care is required to show that the present notion is stable under the
expected manipulations from the “classical” case. One main result in this part is Proposition 2.11
which drives us back to an analogue of the field extension version.

The main core is the subsequent subsection, where we introduce the Jacobian dual rank and
prove the basic characteristic-free criterion of birationality in terms of this rank. The criterion
also holds component-wise as possibly predictable (but not obviously proved!). We took pains
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to transcribe the criterion into purely geometric terms, except for the Jacobian dual rank itself,
whose geometric meaning is not entirely apparent at this stage. This concept has evolved con-
tinuously from previous notions, of which the cradle is the Jacobian dual fibration of [10] (see
the subsequent [8] and [9]). The base ideal of a rational map will play an essential role often not
obviously foreseen in the basic definitions.

Among the techniques for this part, a substantial role is played by the Rees algebra of an
ideal in a more vivid context. Thus, let f = {f0, . . . , fm} ⊂ R be an ordered set of forms of the
same degree, where R denotes a standard graded k-algebra, with k a field and dimR � 1. Thus,
one has a presentation R � k[x0, . . . , xn] = k[X]/a with k[X] = k[X0, . . . ,Xn] standard graded
and a a homogeneous ideal. Let R[Y] = R[Y0, . . . , Ym] be a polynomial ring over R with the
standard bigrading where deg(xi) = (1,0) and deg(Yj ) = (0,1). Since f is generated in a fixed
degree, the Rees algebra

RR((f)) := R ⊕ I ⊕ I 2 ⊕ · · · � R[I t] ⊂ R[t]
is a standard bigraded k-algebra. Mapping Yj �→ fj t yields a presentation R[Y]/J � RR((f)),
with J a bihomogeneous presentation ideal. It will be seen, among the preliminaries, that J
depends only on the rational map defined by f and not on this particular representative. Write

J =
⊕

(p,q)∈N2

J(p,q),

where J(p,q) denotes the k-vector space of forms of bidegree (p, q).
One first relevant bihomogeneous piece for our purpose is J0,∗, which is spanned by the forms

of bidegree (0, q), for all q � 1. Since these forms have coefficients only in k, one can view them
as elements of k[Y]. As such they generate the ideal of all polynomial relations (over k) of f.
Thus,

k[Y]/(J0,∗)k[Y] � k[f],
as standard graded k-algebras, after a degree renormalization in k[f].

For birationality, yet another bihomogeneous piece is as important:

J1,∗ :=
⊕
r∈N

J1,q

with J1,q denoting the bigraded piece of J spanned by the forms of bidegree (1, q) for all q � 0.
Note that J1,∗ = {0} may very well be the case in general. The definition of the Jacobian dual rank
is drawn from this datum in form of the rank of a Jacobian-like matrix of a suitable generating
set of such forms. Although this rank may not be well defined for an arbitrary rational map, it
is stable regarding the various notions introduced (see, e.g., Lemma 2.13). Moreover, the main
result (Theorem 2.18) says that the rational map with source Proj(R) defined by f is birational
onto its image if and only the Jacobian dual rank is well defined and attains its maximal possible
value.

The section develops a good deal of preliminary propositions, of which Proposition 2.15 de-
serves special notice. Due to the technicality involved in the concepts we refer to the appropriate
places in the section.
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Quite a bit of deep classical theory seems to be embedded into the above two graded pieces
of the defining equations of the Rees algebra. The purpose of the Jacobian dual rank is roughly
to link between these pieces. While it is not entirely clear how they entangle, the application in
this work surfaces when this rank acquires maximal possible value.

The second section is concerned with applications of the main criterion.
Since the criterion is stated in terms of an effective numerical invariant, the obvious applica-

bility is to finding out whether a rational map given explicitly by a representative is birational
and, in the affirmative case, to exhibiting a representative of the inverse map. However, here one
has in mind applications of a different nature. Thus, we have collected a few results previously
known in characteristic zero, now fully available in arbitrary characteristic. The flagship is The-
orem 3.2. One of its consequences is a result for plane Cremona maps, saying that the only such
maps whose base ideal is locally a complete intersection at its minimal primes are the classical
quadratic maps (up to a projective change of coordinates). In particular, the result of Dolgachev
[3] is equivalent to showing that the gradient ideal of a homogeneous homaloidal polynomial in
3 variables is locally a complete intersection at its minimal primes.

We close the section by introducing yet another numerical invariant, called the semilinear
generation degree. It would be interesting to capture its full meaning in the present and related
theories – such as elimination.

2. A criterion of birationality

2.1. Prolegomenon: the Koszul–Hilbert lemma

The following curious piece of linear algebra, for which we have found no explicit reference
in the literature, will be useful in the subsequent parts of this section.

Proposition 2.1. Let A be a commutative ring and n a positive integer. Let ρ stand for an
(n + 1) × n matrix with arbitrary entries in A and let � = {�0, . . . ,�n} stand for its (ordered,
signed) n-minors. Then the Koszul relations of � belong to the submodule

Im(ρ) ⊂ An+1.

Proof. Let B = A[X] be a polynomial ring in (n + 1) × n indeterminates and let X denote the
corresponding (n + 1) × n matrix whose entries are X.

We need:

Lemma 2.2. Let D denote a Noetherian factorial subdomain of A – e.g., the prime subring of A.
Then the ideal of D[X] generated by the n-minors of X has grade � 2.

Proof. This is clear as, say, �1 ∈ D[X] generates a prime ideal and, say, �2 is not a multiple
of �1. �

As a consequence, the well-known Hilbert–Burch principle says that the sequence

0 → D[X]n X−→ D[X]n+1 �−→ D[X]
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is exact. Clearly, then the Koszul relations of � belong to the image of the map X as this is
exactly the matrix of first syzygies of �.

Now specialize the variables X to the entries of ρ by means of the obvious homomorphism
D[X] → A extending the inclusion D ⊂ A. Since the formation of determinants and the Koszul
complex specialize, it is clear that the specialization preserves the above relation. �
Remark 2.3. Note that one is not asserting that ρ is the entire matrix of syzygies of �, which is
only true if the grade of � is at least 2 as well.

2.2. Preliminaries on rational maps on reduced varieties

We first fix our standing setup and notation.
Let k denote a fixed, but otherwise arbitrary, ground field. As usual, in order that a projective

set of zeros have enough points one allows coordinates to lie on an algebraically closed field
containing k.

Let R = k[x] = k[x0, . . . , xn] � k[X]/a = k[X0, . . . ,Xn]/a denote a standard graded k-
algebra over a field k of positive dimension. In the sequel we always write X and x for X0, . . . ,Xn

and x0, . . . , xn, respectively. The same notation principle will apply to other sets of variables as
needed.

Rational data and rational maps
Let K(R) denote the homogeneous total ring of quotients of R – i.e., the ring of fractions

M−1R, where M is the set of homogeneous regular elements of R not belonging to any of the
minimal primes of R.

We will be dealing with ordered (m + 1)-sets f = {f0, . . . , fm} of forms of the same degree
in R. Let us say that two such ordered (m + 1)-sets f = {f0, . . . , fm} and f ′ = {f ′

0, . . . , f
′
m},

are EQUIVALENT if the corresponding tuples (f0, . . . , fm) and (f ′
0, . . . , f

′
m) are proportional

by means of a homogeneous invertible element of K(R). This means that there exist regular
homogeneous elements F,F ′ ∈ R such that Ff ′

j = F ′fj , for j = 0, . . . ,m. This easily seen to
be an equivalence relation.

Note that equivalent ordered homogeneous (m + 1)-sets f, f ′ ⊂ R induce a graded k-
isomorphism of the respective representative algebras k[f] and k[f ′], such that fj ↔ f ′

j .

Definition 2.4. A RATIONAL (m + 1)-DATUM OF DEGREE d on R is an ordered set of m + 1
forms f = {f0, . . . fm} ⊂ R of the same degree � 1 satisfying the following conditions:

(i) R is torsionfree over k[f] via the ring extension k[f] ⊂ R.
(ii) The ideal (f)R ⊂ R is not contained in any minimal prime of R.

Note that the first condition reads in the present circumstances that every minimal prime of R

contracts to a minimal prime of k[f], while the second says that the ideal (f) ⊂ R has a regular
element.

An m-TARGETED RATIONAL MAP with SOURCE Proj(R) ⊂ P
n
k is a collection of equivalent

rational (m + 1)-data.

Lemma 2.5. If k is an infinite field, two homogeneous (m + 1)-sets f, f ′ ⊂ R satisfying condi-
tion (ii) of the above definition are equivalent if and only if the matrix
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(
f0 f1 . . . fm

f ′
0 f ′

1 . . . f ′
m

)

has rank 1.

Proof. Indeed, the rank condition means that the 2 × 2 minors vanish (which is readily implied
by equivalence as defined) and that the ideal generated by the entries has a regular element
(which is obviously the case if one of the ideals generated by the rows has a regular element).
To see the converse, since k is infinite one can choose suitable λj ∈ k such that both λ0f0 +
· · · + λmfm and λ0f

′
0 + · · · + λmf ′

m are regular elements. By hypothesis, fjf
′
i = fif

′
j for all

pairs i, j . Therefore, for arbitrary i, one has F ′fi = Ff ′
i , where F = λ0f0 + · · · + λmfm and

F ′ = λ0f
′
0 + · · · + λmf ′

m. �
The rank property was taken in [9] as definition of equivalent representatives of the same

rational map.
Any individual rational (m + 1)-datum is said to be a REPRESENTATIVE of the map and, in

an informal speech, we say that it defines the rational map. Throughout we denote a rational map
by F : f, where f is a particular representative. Often we identify the map with one representative,
which will cause no confusion. As remarked above, equivalent rational (m+1)-data f, f ′ ⊂ R in-
duce a k-isomorphism of the respective representative algebras k[f] and k[f ′], such that fj ↔ f ′

j .
Although this isomorphism is graded, it is not homogeneous (of degree 0). Nevertheless, one can
renormalize the gradings of all these algebras so they become standard k-algebras. What this
actually means is that one can take a common polynomial representation k[Y]/b � k[f] for all
the representatives of the same m-targeted rational map, with k[Y]/b standard.

Base ideal and stability
The ideal (f) ⊂ R generated by a representative f ⊂ R is called a BASE IDEAL of the map. At

the level of base ideals, two representatives f and f ′ of the same map give an isomorphism of (f)
and (f ′) as R-submodules of K(R), i.e., as fractional ideals.

The notion of a representative or of a base ideal is pretty stable in the following sense.

Lemma 2.6. Let f = {f0, . . . fm} and f ′ = {f ′
0, . . . f

′
m} be equivalent ordered sets in R. Then f is

a rational datum if and only if f ′ is a rational datum.

Proof. By the obvious symmetry in an argument, it suffices to show one implication. Thus,
assume that f satisfies the conditions stated in Definition 2.4. As noted above, k[f] � k[f ′], so
there is a bijection between the respective sets of minimal primes. This shows that condition (i)
of Definition 2.4 holds for f ′. Since the k-isomorphism induces an isomorphism of the ideals
(f), (f ′) ⊂ R as R-modules (also remarked before), condition (ii) follows as well. �
Criterion in terms of total rings of quotients

The usual “field” criterion reads as well. Namely, choose a fixed presentation S = k[Y]/b �
k[f] for an arbitrary algebra representative of degree d of an m-targeted rational map. There are
actually three versions of the criterion, as follows. Since S ↪→ R is torsionfree, it induces the
following maps:

(1) An injective graded homomorphism K(S) ↪→ K(R) of degree d − 1 of the respective ho-
mogeneous total rings of quotients.
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(2) An injective homogeneous homomorphism (i.e., a graded homomorphism of degree zero)
K(S) ↪→ K(R(d)), where R(d) ⊂ R is the d th Veronese subring of R.

(3) An injective (non-graded) homomorphism K(S)0 ↪→ K(R)0 in degree zero.

Note that, by definition, K(R(d))0 = K(R)0, so passing to the Veronese in degree zero is tanta-
mount to doing it “on the nose” over R.

Composition
Two such objects can be “composed” in the following sense:

Lemma 2.7. Let R = k[X]/a be a reduced standard graded k-algebra and let F : f ⊂ R be a
rational (m + 1)-datum of degree d on R. Take a presentation S := k[Y]/b � k[f], with Y =
{y0, . . . , ym} variables over k. Let g := {g0, . . . , gr} ⊂ S denote a rational (r + 1)-datum of
degree e on S. Then:

(i) g(f) := {g0(f), . . . , gr(f)} is a rational (r + 1)-datum of degree de on R.
(ii) If f ′ ⊂ R and g′ ⊂ S are representatives of f and g, respectively, then g′(f ′) := {g′

0(f
′),

. . . , g′
r (f

′)} is a representative of the rational map defined by g(f).

Proof. (i) By assumption, R is torsionfree over k[f] � S and S is torsionfree over k[g]. There-
fore, R is torsionfree over k[g]. Likewise, by assumption, (g)S is not contained in any minimal
prime of S, i.e., its image g(f)k[f] via the isomorphism S � k[f] is not contained in any minimal
prime of k[f]. Therefore, by torsionfreeness of R over k[f], the ideal (g(f))R is not contained in
any minimal prime of R.

(ii) Let S = k[Y]/b be a common presentation of the algebras k[f] and k[f ′]. By assump-
tion, there exist F,F ′ ∈ R homogeneous such that Ff ′

j = F ′fj , for j = 0, . . . ,m and, likewise,
G = G(y), G′ = G′(y) ⊂ S homogeneous such that G(y)g′

�(y) = G′(y)g�(y), for � = 0, . . . , r .
We have appended y to the latter to emphasize that they are elements of S = k[Y]/b. Using the
isomorphism k[Y]/b � k[f ′], for instance, one has

G
(
f ′)g′

�

(
f ′) = G′(f ′)g�

(
f ′). (1)

Substituting for f ′
j = (F ′/F )fj , j = 0, . . . ,m in g�(f ′) and pulling out the obvious factor yields

Fe · g�(f ′) = F ′e · g�(f), where e stands for the common degrees of the g�’s. Multiplying by Fe

both members of (1) and bringing into it the last equality gives

(
FeG

(
f ′))g′

�

(
f ′) = G′(f ′)(Feg�

(
f ′)) = (

G′(f ′)F ′e)g�(f),

for � = 0, . . . , r . Now, G(f ′) and G′(f ′) are regular (homogeneous) elements of k[f] and k[f ′],
respectively as they are both images of regular (homogeneous) elements of S = k[Y]/b under a
graded k-isomorphism of algebras. Since R is torsionfree over k[f ′] they are still regular (homo-
geneous) elements of R. Therefore, FeG(f ′) and G′(f ′)F ′e are regular homogeneous elements
of R and we are done.

ADDENDUM. As a slight control, if d (respectively, d ′) and e (respectively, e′) are the respec-
tive degrees of fj (respectively, f ′

j ) and of g� (respectively, g′
�) and, likewise D (respectively, D′)

and E (respectively, E′) are the respective degrees of F (respectively, F ′) and of G (respec-
tively, G′), then
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deg
(
G′(f ′)F ′e) + deg

(
g�(f)

) = d ′E′ + eD′ + de

= d ′(E + e′ − e
) + e

(
D + d ′ − d

) + de

= eD + d ′E + d ′e′

= deg
(
FeG

(
f ′)) + deg

(
g′

�

(
f ′)). �

Image of a rational map
We have seen that all representatives of the same m-targeted rational map have a common

presentation S = k[Y]/b, a standard graded reduced k-algebra. Borrowing from the geometric
terminology, we call Proj(S) ⊂ P

m
k the IMAGE of this map.

Restriction
One can introduce an additional notion, that of a restriction of an m-targeted rational map

F : f ⊂ R. Given a radical ideal I ⊂ R such that (f) is not contained in any minimal prime of R/I

on R and such that R/I is torsionfree over k[f]/I ∩ k[f], then we say that the map RESTRICTS

to Proj(R/I). Thus, being able to restrict a rational map requires quite a bit – note that, if I is a
prime ideal, then torsionfreeness of k[f]/I ∩ k[f] ⊂ R/I is trivially satisfied, so we just have to
worry about the condition on the relative minimal primes, which is unavoidable in the classical
geometric setup.

There is one easy situation where restriction works as expected.

Lemma 2.8. Let F : f ⊂ R be an m-targeted rational map with source Proj(R).

(1) If P ⊂ R is a minimal prime of R then the map restricts to Proj(R/P ) and the image of the
restriction is Proj(k[f]/P ∩ k[f]).

(2) Conversely, if ℘ ⊂ k[f] is a minimal prime, then Proj(k[f]/℘) is the image of the restriction
of f to R/P for some minimal prime P ⊂ R.

Proof. (1) This follows immediately from the properties of the rational map.
(2) It suffices to show that ℘ is contracted from some prime P ⊂ R+, as in this case a minimal

prime of R contained in P will contract to ℘ as well. For that, it suffices to show that (℘)R is
not an irrelevant ideal in R. But if that were the case, one would have ℘ = (f)k[f] which is
impossible since k[f] is a reduced ring of positive dimension (e.g., because (f) has a regular
element contained in k[f] – see Remark 2.5). �

What the previous lemma does for us is to allow many arguments to be reduced to the case
where R is an integral domain. Of course, this has to be used judiciously.

Remark 2.9 (Geometric transcription). Suppose that k is algebraically closed. By a version of the
projective Nullstellensatz, (2) implies that for every P ∈ Min(R) there exists some homogeneous
submaximal ideal (i.e., generated by n − 1 linearly independent 1-forms in x) n ⊂ R containing
P but not (f). For such an n, the contraction n ∩ k[f] ⊂ k[f] is an ideal generated by m − 1
linearly independent 1-forms in f. That is to say, if we write k[Y]/b � k[f], then n ∩ k[f] is the
residual image of a homogeneous submaximal ideal in k[Y]. Geometrically, this implies that
f0(a), . . . , fm(a) makes sense as a point in P

m for at least one point a on any given irreducible
component of the projective subset V ⊂ P

n whose homogeneous coordinate ring is R. Therefore,
on every such component there is a nonempty open subset where f affords a well-defined map.
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In particular, the so obtained map F is well defined on any open set U ⊂ V that intercepts non-
emptily every irreducible component. The image of F is the closure W ⊂ P

m of the set of images
of points from any such U . This is the projective set of P

m whose homogeneous coordinate ring
is k[Y]/b, i.e., after the obvious degree renormalization, k[f] itself.

Birational maps and “field” extension criteria
The simplest instance of an m-targeted rational map is F : X ⊂ R, represented by the residues

in R of the variables {X0, . . . ,Xn} – called THE IDENTITY rational map of Proj(R). The closest
rational maps to the identity are the so-called birational maps. We give a formal definition.

Definition 2.10. An m-targeted rational map f ⊂ R = k[X0, . . . ,Xn]/a of degree d is said to
be BIRATIONAL (ONTO THE IMAGE) if there exists an n-targeted rational map G : g ⊂ S =
k[Y0, . . . , Ym]/b � k[f] such that the composite g(f) ⊂ R is equivalent to the identity on Proj(R).

The rational map G is called an INVERSE to F.
The classical field theoretic criterion can be extended via the following formulation.

Proposition 2.11. Let F : f ⊂ R = k[X0, . . . ,Xn]/a denote an m-targeted rational map of de-
gree d . The following conditions are equivalent:

(a) F : f ⊂ R is birational onto the image.
(b) For every minimal prime P of R, the induced m-targeted rational map

F�P : f̄ ⊂ R̄ = R/P

is birational onto its image and, moreover, R/P is the unique minimal component of R

mapping to the latter by F.
(c) The induced homomorphism in degree zero K(S)0 ↪→ K(R)0 is an isomorphism.
(d) The induced homogeneous homomorphism K(S) ↪→ K(R(d)) is an isomorphism.

Proof. The equivalence of (c) and (d) is fairly known – see, e.g., [12, Proof of Theorem 6.6] or
[15, Proof of Proposition 2.1] for the argument in a more special setup. Here we trade the non-
homogeneous total ring of quotients for the homogeneous one, but the reasoning is the same,
namely, K(S) = K(S)0(f ) and K(R(d)) = K(R(d))0(f ) = K(R)0(f ) for some regular 1-form
f ∈ S or, up to identification S = k[f], a suitable k-linear combination of f0, . . . , fm. Since the
maps in the statement are natural, the equivalence is clear.

Thus we are left with the mutual equivalence of (a), (b) and (c).
We note that, quite generally, if R is any reduced Noetherian ring, its ordinary total ring of

quotients decomposes as the direct product of the respective fields of fractions of the domains
R/P , where P runs through the minimal primes of R. If, moreover, R is standard graded over a
field k (possibly even more generally) then, by restriction, this decomposition implies a similar
decomposition of the homogeneous total ring of fractions K(R) = ∏

P∈Min(R) K(R/P ). Clearly,
this decomposition induces one in degree zero as well:

K(R)0 =
∏

P∈Min(R)

K(R/P )0, (2)

where the factors are now fields.
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(a) ⇒ (b) This piece follows from the first statement of Lemma 2.8.
(b) ⇒ (c) By the classical field criterion in the domain case one knows that he induced homo-

morphism in degree zero K(S/P ∩S)0 ↪→ K(R/P )0 is an isomorphism for every minimal prime
P of R. This is well known, but for the sake of completion, we repeat the argument. In fact, it
is now easy to work directly with coordinates. Updating the notation, assume that R = k[x] is a
domain. Then one has

K(S)0 = k(y)0 = k

(
y1

y0
, . . . ,

ym

y0

)
� k(f)0 = k

(
f1

f0
, . . . ,

fm

f0

)
⊂ k(x)0 = k

(
x1

x0
, . . . ,

xn

x0

)
,

where we assume y0 = 0, x0 = 0 without lost of generality. By assumption, there are nonzero
(homogeneous) H,H ′ ∈ R such that H · g�(f) = H ′ · x�, for � = 0, . . . , n. Then

x�

x0
= g�(f)

g0(f)
= f e

0 (g�(f1/f0, . . . , fm/f0))

f e
0 (g0(f1/f0, . . . , fm/f0))

= g�(f1/f0, . . . , fm/f0)

g0(f1/f0, . . . , fm/f0)
, � = 0, . . . , n,

thus showing the required equality k(f1/f0, . . . , fm/f0) = k(x1/x0, . . . , xn/x0).
Next, note that the map K(S/P ∩S)0 ↪→ K(R/P )0 is naturally induced by the map K(S)0 ↪→

K(R)0.
Then, up to identification we only need to show that if K(S/S ∩ P)0 = K(R/P )0 for every

P ∈ Min(R), then K(S)0 = K(R)0. To see this, note that the hypothesis implies that, for every
℘ ∈ Min(S), exactly one prime P ∈ Min(R) contracts to ℘ – i.e., the map Min(R) → Min(S)

is surjective (hence, bijective by the second statement of Lemma 2.8). This is due to the fact
that in the injection K(S)0 ↪→ K(R)0 the decomposition (2) forces the restriction to an individ-
ual factor K(S/℘) to map diagonally to the product of the factors of K(R/P )0, one for each
P ∈ Min(R) contracting to ℘. By the same token, this implies the sought global isomorphism
K(S)0 � K(R)0.

(c) ⇒ (a) (Assuming k infinite.) Fix a regular homogeneous element x ∈ (x) = R+ of the
form x0 + ∑n

�=1 λ�x�, for suitable λ� ∈ k. For � = 1, . . . , n, let g�(y)/g(y) ∈ K(S)0 denote
the (uniquely defined) inverse image of x�/x under the isomorphism K(S)0 � K(R)0, for suit-
able homogeneous elements g(y), g�(y) ∈ (y) = S+, with g(y) regular. Since the isomorphism
K(S)0 � K(R)0 is induced by y �→ fj , one has g�(f)/g(f) = x�/x, for � = 1, . . . , n. Thus,
x · g�(f) = g(f) · x�, for � = 1, . . . , n, with x,g(f) regular homogeneous elements in R. Now
set g0(y) := g(y) − ∑n

�=1 λ�g�(y). Then

g(f)x0 = g(f)

(
x −

n∑
�=1

λ�x�

)
= xg(f) −

n∑
�=1

λ�

(
g(f)x�

) = xg(f) −
n∑

�=1

λ�

(
xg�(f)

)

= x

(
g(f) −

n∑
�=1

λ�g�(f)

)
= x · g0(f).

Finally, note that g0(y), . . . , gn(y) ⊂ S = k[y] is a rational (n + 1)-datum by Lemma 2.6, hence
defines an n-targeted rational map. Therefore, the rational (n + 1)-data g0(f), . . . , gn(f) and
x0, . . . , xn are equivalent, as was to be shown. �
Corollary 2.12. If an m-targeted rational map F : f ⊂ R = k[X0, . . . ,Xn]/a is birational (onto
its image) with n-targeted inverse rational map G : g ⊂ S = k[Y0, . . . , Ym]/b � k[f], then the
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composite f(g) ⊂ S is equivalent to the identity on Proj(S). Consequently, the inverse is uniquely
defined.

Proof. The first statement follows from the equivalence of (a) and (c) in the previous theorem.
The second statement follows from the first in the usual way, namely writing ≡ for equivalence,
if g′ is another inverse, we have

X ≡ g(f) ⇒ g′ ≡ X
(
g′) ≡ g(f)

(
g′) ≡ g

(
f
(
g′)) ≡ g(Y) ≡ g. �

The corollary means, as it should, that a birational map on Proj(R) onto its image Proj(S) has
a unique “two-sided” inverse and the inverse is a birational map on Proj(S) onto Proj(R).

2.3. The JD-rank and its bearing to birationality

Definition and background
Let us recap the present algebraic tool for birationality that goes in parallel to the geometric

notion of the linear fibers of a rational map. This concept has evolved continuously from previous
notions, of which the cradle is the Jacobian dual fibration of [10] (see the subsequent [8] and [9]).

Thus, let F : f ⊂ R = k[X]/a be an m-targeted rational map with source Proj(R), where k[X]
is standard graded over k, with dimR � 1. Let R[Y] = R[Y0, . . . , Ym] be a polynomial ring over
R with the standard bigrading where deg(xi) = (1,0) and deg(Yj ) = (0,1). Since f is generated
in a fixed degree, the Rees algebra

RR((f)) := R ⊕ I ⊕ I 2 ⊕ · · · � R[I t] ⊂ R[t]
is a standard bigraded k-algebra. Mapping Yj �→ fj t yields a presentation R[Y]/J � RR((f)),
with J a bihomogeneous presentation ideal.

Just as the image of a rational map, J depends only on the rational map and not on any of its
representatives. Write

J =
⊕

(p,q)∈N2

J(p,q),

where J(p,q) denotes the k-vector space of forms of bidegree (p, q).
First focus on J0,∗, which is spanned by the forms of bidegree (0, q), for all q � 1. Since

these forms have coefficients only in k, one can view them as elements of k[Y]. As such they
generate the ideal of all polynomial relations (over k) of f. Thus,

k[Y]/(J0,∗)k[Y] � k[f],
as standard graded k-algebras, after a degree renormalization in k[f]. Thus, the ideal (J0,∗)k[Y]
recovers the ideal b of the image brought up in the previous section. We write S = k[Y]/
(J0,∗)k[Y] � k[f] throughout, thinking interchangeably of S as one or the other.

For birationality, the following bihomogeneous piece is no less important:

J1,∗ :=
⊕

J1,q
r∈N
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with J1,q denoting the bigraded piece of J spanned by the forms of bidegree (1, q) for all q � 0.
Note that J1,∗ = {0} may very well be the case in general.

Now, a form of bidegree (1,∗) can be written as
∑n

i=0 Qi(Y)xi , for suitable homogeneous
Qi(Y) ∈ k[Y] ⊂ R[Y] of the same degree. Since Y are indeterminates over R, two such rep-
resentations of the same form imply a syzygy of {x0, . . . , xn} with coefficients in k. Thus the
representation is unique up to k-linear dependency of {x0, . . . , xn}, i.e., up to elements of a1.

In particular, if the EMBEDDING DIMENSION of R – i.e., the k-vector space dimension
edim(R) := dimk(R1) = n+1−dimk a1 – is n+1 then every such form has a unique expression.

Next, one can pick a minimal set of generators of the ideal (J1,∗) consisting of a finite number
of forms of bidegree (1, q), for various q’s. Let {P1, . . . ,Ps} ⊂ k[X,Y] denote liftings of these
biforms and let {�1, . . . , �r} ⊂ k[X] be a k-vector space basis of a1. Consider the Jacobian matrix
of the polynomials {�1, . . . , �r ,P1, . . . ,Ps} with respect to X, a matrix with entries in k[Y].
Write ψ for the corresponding matrix over S = k[Y]/b, here called the weak Jacobian matrix
associated to the given set of generators of (J1,∗). Note that ψ has a distinguished (n + 1 −
edim(R)) × (n + 1) submatrix ρ with entries in k[Y]0 = k, which is non-singular. Its number of
rows r = n + 1 − edim(R) can be dubbed the DEGENERATION INDEX dgi(a) of the presentation
R � k[X]/a. Clearly, this index is a lower bound for the rank of ψ over S whenever this rank is
well defined.

On the other hand, by definition one clearly has X ·ψt = 0 over RR(f), in particular the vector
(X)t belongs to the null space of ψ over RR(f). If R is a domain then the rank of ψ over RR(f)
is at most n, hence for even more reason also over the residue ring RR((f)) � S.

A consequence of Proposition 2.15 below will show that this upper bound holds true even if
R is not integral, provided ψ still has a rank.

Note that a weak Jacobian matrix ψ is not uniquely defined due to the lack of uniqueness in
the expression of an individual form and to the choice of bihomogeneous generators. Besides, it
can be fairly “slack”, in the sense that some of its columns may be zero – actually ψ itself can
turn out to be the zero matrix for that matter!

On the bright side however, one has:

Lemma 2.13. If the weak Jacobian matrix associated to a set of bihomogeneous minimal gen-
erators of (J1,∗) has rank over S then the weak Jacobian matrix associated to any other set of
bihomogeneous minimal generators of (J1,∗) has rank over S and the two ranks coincide.

Proof. One shows, namely, that two such matrices have the same column submodule over S.
Let {P1, . . . ,Ps}, {Q1, . . . ,Qs} ⊂ k[X,Y] denote liftings of two sets of minimal biforms of

various bidegrees (1, q) , for suitable q � 1, generating (J1,∗). Note that though the sets may be
different, the set of corresponding bidegrees is uniquely defined up to reordering of generators.
Say, deg(Pt ) = deg(Qt ) = (1, dt ), with 1 � t � s and 1 � d1 � d2 � · · · � ds . Therefore, for
t = 1, . . . , s we may write

Qt =
s∑

j=1

λtjptj (Y)Pj +
∑

|αt |=dt

aαt (X)Yαt ,

for suitable λtj ∈ k, ptj (Y) ∈ k[Y] of degree dt − degY(Pj ) and aαt (X) ∈ a1. Setting aαt (X) =∑r
μtk�k(X), we obtain
k=1



402 A.V. Doria et al. / Advances in Mathematics 230 (2012) 390–413
∂Qt

∂Xi

=
s∑

j=1

λtjptj (Y)
∂Pj

∂Xi

+
∑

|αt |=dt

(
r∑

k=1

μtkYαt
∂�k(X)

∂Xi

)
.

This shows that the t th column of the Jacobian matrix of {�1, . . . , �r ,Q1, . . . ,Qs} is contained
in the column k[Y]-submodule of the Jacobian matrix of {�1, . . . , �r ,P1, . . . ,Ps}. By symmetry,
the two column k[Y]-submodules coincide, hence the S-submodule Im(ψ) through any one of
the two sets of generators is the same, as was to be shown. �

Because of the previous lemma, we say that any weak Jacobian matrix associated to a set
of minimal generators of (J1,∗) is a JACOBIAN DUAL MATRIX of f (or of the corresponding
m-targeted rational map F). The lemma unveils a numerical character of such a construction.

Definition 2.14. If some (hence, every) Jacobian dual matrix of an m-targeted rational map F :
f ⊂ R � k[X]/a has a rank over S, we will say that F has a JACOBIAN DUAL RANK and write
jd rank(F) to denote it. In this situation, the NON-DEGENERATE JACOBIAN DUAL RANK of F is
jd rank+(F) := jd rank(F) − dgi(a) � 0.

Note that the non-degenerate Jacobian dual rank is well defined, provided the Jacobian dual
rank is.

The next result shows that the rank just introduced is sensitive to the dimension difference
between source and target.

Proposition 2.15. Let F : f ⊂ R stand for an m-targeted rational map. Set S = k[Y]/b �
k[f] ⊂ R. If F has a Jacobian dual rank then

dimR − dimS � n − jd rank(F) = edim(R) − 1 − jd rank+(F).

Proof. Up to a non-singular k-linear map on R, one may assume that the forms in f involve
effectively at most the first r + 1 = edim(R) elements x0, . . . , xr . More precisely, let

A =
(

1r+1 a = (ah,i)

1n−r

)

be an invertible k-matrix such that (X0, . . . ,Xn) · A = (X0, . . . ,Xr, �r+1, . . . , �n), with �h =
Xh − ∑r

i=0 ah,iXi , r + 1 � h � n and {�r+1, . . . , �n} forming a basis of the k-vector space a1.
This defines a homogeneous k-algebra isomorphism

R = k[X0, . . . ,Xn]/a � R̃ = k[X0, . . . ,Xr ]/ã

which in turn restricts to homogeneous k-algebra isomorphism of the respective subalgebras k[f]
and k[f̃], where fj �→ f̃j under this map – however, note that the last isomorphism is not induced
by equivalence of representatives, one is rather changing the rational map by “source and target”
transformations.

Thus, this operation does not affect either dimR or dimS and, likewise, will not affect the
numbers in the rightmost side of the stated inequality.



A.V. Doria et al. / Advances in Mathematics 230 (2012) 390–413 403
Updating the notation, consider the S-module E := cokerS(ψt ) defined as the cokernel of the
dual map associated to ψ . Since ψt has a rank over S, so does E. Then

dim RS(E) = dimS + rankS(E) = dimS + edim(R) − rankS(ψ),

where RS(E) stands for the Rees algebra of E in the sense of [13]. On the other hand, a piece of
the assumption on the base ideal (f) implies that dim RR((f)) = dimR + 1 – for which it suffices
to know that (f) is not contained in at least one minimal prime of R of maximal dimension.

Then the asserted inequality follows from the inequality

dim RR((f)) � dim RS(E),

which in turn stems from the existence of an S-algebra surjection RS(E) � RR((f)), with
RR((f)) viewed as an S-algebra via

S = k[Y]/b � k[Y]/(J0,∗) ↪→ R[Y]/J ,

where J is the presentation ideal of (f) based on these generators.
To see this, one first shows that there is an S-surjection SS(E) � RR((f)) with source the

symmetric algebra of E. Indeed, one has

SS(E) � S[X]/I1
(
X · ψt

) = k[Y][X]/(b, I1
(
X · ψt

))
� R[Y](b, I1

(
X · ψt

))
� R[Y]/J .

According to [13], RS(E) � SS(E)/(0 :SS(E) s), the symmetric algebra modulo torsion,
where s is a suitable regular homogeneous element of S. Therefore, it suffices to show that
0 :SS(E) s maps to zero under the S-surjection SS(E) � RR((f)). Thus, pick an element
G ∈ 0 :SS(E) s that maps to a nonzero element of RR((f)). Then s ∈ S ⊂ RR((f)) under the
above injection annihilates a nonzero element of RR((f)). Since RR((f)) is R-torsionfree and
S-torsionfree as a piece of the assumption that the inclusion S ⊂ R is induced by a rational map,
then RR((f)) is S-torsionfree. Therefore, we get a contradiction. �
Corollary 2.16. With the notation of the previous theorem, jd rank+(F) � edim(R) − 1. More-
over, if equality holds then dimS = dimR.

Thus, if the rank exists, one has the bounds:

dgi(a) � jd rank(F) � n,

0 � jd rank+(F) � edim(R) − 1.

Remark 2.17. We note that, in the classical integral case in characteristic zero, the corollary
says: jd rank+(F) = edim(R)− 1 implies that the general fiber of the map is a finite set of points.
Thus, the preliminary estimate in Proposition 2.15 puts in evidence that the Jacobian dual rank
plays a sort of complementary role to a transcendence degree in the integral case. The subsequent
results will actually show that it takes over a complementary role to the degree of the rational
map in the classical setup.
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2.4. Statement and proof of the criterion

We now state the main theorem of this section, which gives a criterion of birationality. After
having worked all this way a purely algebraic setup, it is natural to first convey an algebraic
formulation of the criterion.

We keep the essential notation of the previous subsections.

Theorem 2.18. Let F : f ⊂ R = k[X]/a = k[X0, . . . ,Xn]/a stand for an m-targeted rational map
and, for every minimal prime P of R, let F�P denote the induced m-targeted rational map with
source R/P . The following conditions are equivalent:

(a) F is birational onto the image.
(b) F has non-degenerate Jacobian dual rank satisfying

jd rank+(F) = edim(R) − 1.

(c) For every minimal prime P of R, F�P has non-degenerate Jacobian dual rank satisfying

jd rank+(F�P) = edim(R/P ) − 1.

SUPPLEMENT. Suppose, moreover, that the above equivalent conditions holds. Let ψ denote a
weak Jacobian dual matrix of F over S = k[Y]/b � k[f].

(i) A rational (n+1)-datum in S representing the inverse map is given by the coordinates of any
homogeneous vector of positive degree in the (rank one) null space of ψ over S for which
these coordinates generate an ideal containing a regular element.

(ii) If further R is a domain, a rational (n + 1)-datum as in (i) can be taken to be the set of the
(ordered, signed) (edim(R)−1)-minors of an arbitrary (edim(R)−1)×edim(R) submatrix
of ψ of rank edim(R) − 1.

Proof. As in the proof of Proposition 2.15, up to a non-singular k-linear map on R, one may
assume that the forms in f involve only the first r +1 = edim(R) elements x0, . . . , xr . In addition,
the resulting isomorphisms at the respective levels of R and S induce homogeneous k-algebra
isomorphisms K(R) � K(R̃) and K(S) � K(S̃), where as before S = k[Y]/b � k[f] � k[f̃].

Finally, passing to degree zero and using the field criterion of Proposition 2.11, it follows that
F : f ⊂ R is birational with source Proj(R) if and only if f̃ ⊂ R̃ gives a birational map with source
Proj(R̃). This shows that (a) is stable under this change. According to Proposition 2.15 and the
discussion of its preliminaries, the non-degenerate Jacobian dual rank in both (a) and (b) is also
stable under this process.

Thus, we may restart now assuming that n + 1 = edim(R) – in other words, R =
k[X0, . . . ,Xn]/a, with a ⊂ (R+)2 – and jd rank(F) = jd rank+(F).

(a) ⇒ (b) By assumption, there is a rational (n + 1)-datum g(y) = {g0(y), . . . , gn(y)} ⊂ S

such that g(f) is equivalent to the identity on R. Now, there is an isomorphism of k-algebras
Φ : RR((f)) � RS((g)) induced by the identity map of k[X,Y]/(a,b). The existence of this
isomorphism is the same as in [9, Theorem 2.1, (i) ⇒ (ii)], observing that the hypothesis of R

(hence S) being a domain is superfluous because the two maps constructed in [9] were inverse
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of each other by construction. We repeat the basic idea for the sake of completeness and further
clarity while adapting the argument to the present context. One has isomorphisms

k[x,y]/(a,b)

Jf
� k[x]

a
[ft] = RR((f)), mapping xi �→ xi (mod a), yj �→ fj t

and, similarly,

k[x,y]/(a,b)

Jg
� k[y]

b
[gu] = RS((g)), mapping yi �→ yi (mod b), xi �→ giu.

Then Φ drives Jf inside Jg by showing that if F(x,y) ∈ k[x,y] is bihomogeneous such that
F(x, ft) ≡ 0 (mod a)k[x, t] then F(gu,y) ≡ 0 (mod b)k[y, u]. To prove this one uses that the
composite f(g) is equivalent to the identity of Proj(S). The reverse map works the same way by
the obvious exchange.

Restricting to the bihomogeneous pieces, one has in particular Φ((Jf)(1,s)) = (Jg)(s,1), for
every s � 1. Note that for varying s � 1, (Jg)(s,1) generate the presentation ideal of the sym-
metric algebra of g over S. Up to a permutation of the variables x, one has, say, (Jg)(s,1) =
I1((x0 · · ·xμ−1) · M), where M denotes the matrix of a minimal graded presentation of g over S

and μ = μ(g) is the minimal number of generators of the ideal (g). Further, if ψ denotes a weak
Jacobian dual matrix of f over S then Φ((Jf)(1,s)) = I1((x0 · · ·xn) · ψt) by the definition of ψ .
The ensued equality I1((x0 · · ·xn) · ψt) = I1((x0 · · ·xμ−1) · M) shows that the last n − μ rows
of ψt are null. Hence if ψ ′ is the matrix obtained by removing the zero columns of ψ then any
column of ψ ′t lives in Im(M) and vice versa. Therefore Im(ψ ′) = Im(M).

Now M has a rank over S. This is because gradeS(g) � 1 by definition of a rational datum,
hence a presentation map of (g) over S has a rank as well. Clearly then ψ ′ has a rank and
rank(ψ) = rank(ψ ′) = rank(M) = μ − 1 = edim(R) − 1, the last equality following from the
non-degeneracy of R.

(b) ⇒ (c) Note that n = edim(R) − 1 as we are assuming that R is non-degenerate. By the
definition of rank, the ideal of minors In(ψ) of a weak Jacobian dual matrix ψ has a regular
element on S. Let P be minimal prime of R and Q = P ∩ S, using the isomorphism S � k[f].
Clearly then In(ψ�Q) = {0}, where ψ�Q is the matrix on S/Q obtained by taking the entries of
ψ modulo Q. It follows that ψ�Q has rank n over S/Q.

Now consider a weak Jacobian dual matrix ψ̃ of F�P , as obtained from the Rees algebra
RR/P ((f)+P/P ). By definition, Im(ψ�Q) can be taken to be a submodule of Im(ψ̃). Therefore,
the rank of ψ̃ is at least n, hence it obtains

edim(R/P ) − 1 − jd rank+(F�P) = n − jd rank(F�P) � 0,

from which ensues jd rank+(F�P) � edim(R/P ) − 1 and then equality follows by Proposi-
tion 2.15, as required.

(c) ⇒ (a) The proof will simultaneously argue for item (ii).
The first step is to use Proposition 2.11, by which the condition in (a) is equivalent to the

condition that every restriction F�P of F is birational onto its image and, moreover, R/P is the
unique minimal component of R mapping to the latter by F.
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To show that one can reduce to the case where R is a domain, we argue as follows. Given a
minimal prime P of R, write R/P � (k[x]/a)/(P/a) � k[x]/P and S/P ∩ S � k[y]/Q, where
Q is the inverse image of P in k[y]. Further, set FP = F�P to emphasize the original polynomial
ambient. The assumption then reads as

jd rank+(FP) = edim(R/P ) − 1 = n − dgi(P),

where dgi(P) is the degeneration index of P as discussed in the beginning of the subsection.
Equivalently, jd rank(FP) = n. Thus, if we show that this implies that FP is birational onto its
image we will be done.

Therefore, we may assume at the outset that R is a domain and a weak Jacobian dual matrix
ψ has rank n. But then one can select an n × (n + 1) submatrix σ of ψ of rank n. Let � :=
{�0, . . . ,�n} stand for the ordered signed n-minors of σ . This set is a rational (n + 1)-datum. It
remains to prove that �(f) is equivalent to the identity on Proj(R).

Apply Proposition 2.1 with A := k[y] and with ρ standing for the transpose of the selected
n × (n + 1) submatrix σ of ψ of rank n to get that the Koszul forms �ixj − �jxi , one for each
pair i, j , belong to the k[y]-submodule of An+1 = ∑n

i=0 Axi generated by the forms induced
by the rows of σ – i.e., obtained as inner product of these by the transpose (x0, . . . , xn)

t . But
the latter, by definition, belong to the defining ideal of the Rees algebra of (f) over R[Y], hence
vanish on the tuple whose coordinates are the constituents of f.

Therefore

�i(f)xj = �j(f)xi, for each pair i, j. (3)

Recall that some �i(f) = 0; say, this is the case for i = n. On the other hand, xn = 0 since
otherwise (3) implies that xi = 0 for every i, which is nonsense. In particular, one has the equal-
ities �n(f)xi = xn�i(f), with �n(f), xn nonzero. Therefore �(f) is equivalent to the identity on
Proj(R).

It remains to prove (i).
Let ht ∈ ker(ψt ) be given as in the hypothesis of (i). Let g be a representative of the inverse

map such that the vector gt ∈ ker(ψt ) as in the proof and notation of the implication (a) ⇒ (b).
The argument there showed that ker(ψt ) has rank 1. Since the ideal (h) has a regular element by
assumption, Lemma 2.5 implies that h and g are equivalent (n + 1)-sets. Then, by Lemma 2.6,
h is rational datum, hence defines the inverse map as well. �
Remark 2.19. The argument in the proof of (ii) above goes through regardless of the inte-
grality assumption, provided a weak Jacobian dual matrix of f admits a submatrix of size
(edim(R) − 1) × edim(R) and of rank edim(R) − 1.

We now transcribe the above result into a geometric version. We assume that the ground field
k is infinite and that varieties have points in an algebraic closure of k.

Theorem 2.20. Let V ⊂ P
n (n � 1) denote a reduced, but not necessarily irreducible, projective

subvariety. Let F : V ��� P
m denote a rational map.
k
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The following conditions are equivalent:

(a) F is a birational map of V onto its image.
(b) F has non-degenerate Jacobian dual rank and the latter equals the embedding dimension of

the affine cone over V .
(c) For every irreducible component W of V , the restriction of F to W has non-degenerate

Jacobian dual rank and the latter equals the embedding dimension of the affine cone over W .

Moreover, when these conditions hold then

(i) The inverse map to F is given by the coordinates of any sufficiently general homogeneous
vector of positive degree in the null space of a weak Jacobian dual matrix of F.

(ii) If besides, V is irreducible, the coordinates of the inverse to F are the (ordered, signed)
n-minors of an arbitrary n × (n + 1) submatrix rank n of a weak Jacobian dual matrix of F.

(“Sufficiently general” in the above statement means that the general k-linear combination of
the coordinates of the vector ought to be a nonzero-divisor on the homogeneous coordinate ring
of the image.)

Remark 2.21. (1) A tall order on the computational side of the theory is to get hold of the span-
ning biforms of J1,∗ and J0,∗ without actually computing all the generators of Jf. For the second
bihomogeneous piece this is beckoningly the main problem of implicitization in elimination the-
ory. One of the common techniques is to try and derive the implicit equations by means of the
so-called Sylvester method starting out from the defining equations of the symmetric algebra
of I = (f) (i.e., the bihomogeneous piece of bidegrees (∗,1)). In special situations, this method
often throws some light on obtaining J1,∗ – see, e.g., [5, Example 5.7].

(2) Note that the theorem gives no hint on the minimal possible degree of a representative of
the inverse map. Even in the case of a Cremona map, the degree will be elusive as the represen-
tative given by the minors will typically carry a non-trivial factor. Thus, the question arises as to
how one goes about computing the degree of the gcd of the minors in the latter case. Often this
can be computed by a careful scrutiny of the Hilbert series (see, e.g., [8, Proposition 3.1]) or by
local structure (see [8, Examples 2.4, 2.5, ] and also [17, Theorem 3.1]).

(3) It would be curious to understand the meaning of a weak Jacobian dual matrix – or at least
of its rank – in purely geometric terms. In particular, the Jacobian dual rank seems to be related
to the field degree in a sort of complementariness.

3. Tidbits on birational maps

3.1. Algebraic preliminaries

We recall a few algebraic notions which will be used in this part.
A very basic condition on an ideal is as follows.

Definition 3.1. An ideal I ⊂ R in a ring R is said to be OF LINEAR TYPE if the natural A-algebra
homomorphism SR(I) � RR(I) is injective.
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Here SR(I) and RR(I) denote the symmetric and the Rees algebra of I , respectively. The
literature on this is quite extensive (see [10,11,13] and the book [18]).

Now assume that R = k[x] = k[X0, . . . ,Xn]/a denotes a standard graded k-algebra over a
field k.

Let f = {f0, . . . , fm} ⊂ R be forms of a fixed degree d � 1. We will henceforth denote by
ϕ = ϕf a graded matrix whose columns generate the first syzygy module of f. Thus, one has a
free graded presentation of the homogeneous ideal I := (f) ⊂ R,

⊕sR(−ds)
ϕ−→ Rm(−d) → R. (4)

We denote by ϕ1 = ϕ1(f) the matrix whose columns form a set of generators of the submodule
Im(ϕ)d+1 (i.e., the coordinates of such vectors as elements of the standard graded ring R are
linear forms). Clearly, ϕ1 can always be taken as a submatrix of ϕ, so we informally say that ϕ1
is the LINEAR PART of the whole syzygy matrix ϕ. Not infrequent is the case where ϕ1 = 0. On
the other end of the spectrum, an important special case is when ϕ1 = ϕ - we then say that I has
a LINEAR PRESENTATION.

A weaker condition is a certain rank requirement. Recall that ϕ has a well-defined rank r if
and only if Is(ϕ) = {0} for s > r and Ir(ϕ) has a regular element. This is equivalent to requiring
that the R-submodule Z := Im(ϕ) ⊂ Rm have rank r – i.e., that Zp be free of rank r for every
associated prime of R. One also has that Z (hence, ϕ too) has a rank if and only if I has a regular
element.

We will say that ϕ1 has maximal (possible) rank if ϕ has a rank and rank(ϕ1) = rank(ϕ). We
could also say in this situation that ϕ has MAXIMAL LINEAR RANK.

3.2. Consequences of the main criterion

In this part we draw some corollaries of Theorem 2.18 in the case where F : P
n ��� P

n. Recall
that a birational map of P

n onto itself is known as a CREMONA TRANSFORMATION.
We emphasize that in this context much of the theory, including the main criterion, gets simpli-

fied and more visible. Cremona transformations have a uniquely defined minimal representative
(both the map and its inverse) and the corresponding degrees are important invariants in the
classical theory.

Some of the applications in this section envisage solving the questions posed in [9], in that
they are characteristic-free.

For example, one has the following characteristic-free version of [9, Theorem 4.1] and [2,
Proposition 4.5(iii)].

Theorem 3.2. Let F : P
n ��� P

m be a rational map, given by m + 1 forms f = {f0, . . . , fm} of
a fixed degree. If the image of F has dimension n and rankϕ1 = n (maximal possible) then F is
birational onto its image.

Proof. Following the basic leitmotif of [10, Proposition 1.1], write Y · ϕ1 = X · ρ, where ρ

is a uniquely defined matrix whose entries are linear forms in k[Y] = k[Y0, . . . , Ym]. Note
that the left (respectively, right) side generates the presentation ideal of the symmetric algebra
Sk[X](coker(ϕ1)) (respectively, Sk[Y](coker(ρ))). Therefore, the identity map of k[X,Y] induces
a k-isomorphism between these algebras.
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Note the surjection coker(ϕ1) � I = (f), whose kernel is torsion since ϕ1 has rank n by
hypothesis. Therefore

Rk[X]
(
coker(ϕ1)

) � Rk[X](I ). (5)

Let J denote the presentation ideal of the Rees algebra Rk[X](I ) on k[X,Y]. Write S := k[Y]/b
for the homogeneous coordinate ring of the image of F on P

m and. Recall from previous sections
that b ⊂ J .

Write E := coker(ρ). Since the symmetric algebra is functorial, one has

SS(E ⊗k[Y] S) � Sk[Y](E)/bSk[Y](E) � k[X,Y]/(b, I1(X · ρ)
) = k[X,Y]/(b, I1(Y · ϕ1)

)
.

Thus, there is a surjection SS(E ⊗k[Y] S) � k[X,Y]/J .

Claim. The surjection SS(E ⊗k[Y] S) � k[X,Y]/J induces an isomorphism

RS(E ⊗k[Y] S) � k[X,Y]/J .

Recalling that the Rees algebra RS(E ⊗k[Y] S) is obtained thereof by killing the S-torsion,
we write T for the lifting of the latter to k[X,Y]. Thus

RS(E ⊗k[Y] S) � k[X,Y]/(b, I1(Y · ϕ1), T
)
.

Then let G ∈ T . Then F(Y)G ∈ (b, I1(Y · ϕ1)) ⊂ J for some F(Y) ∈ k[Y] \ b. Since J is a
prime ideal and F(Y) /∈ J because k[Y] ∩ J = b, necessarily G ∈ J . This proves the inclusion
(b, I1(Y · ϕ1), T ) ⊂ J as (b, I1(Y · ϕ1)) ⊂ J .

Conversely, let G = G(X,Y) ∈ J . By (5), J is the k[X]-torsion of k[X,Y]/I1(Y · ϕ1)

lifted to k[X,Y]. Therefore, there exists F(X) ∈ k[X] \ I1(Y · ϕ1) – i.e., F(X) = 0 – such that
F(X)G(X,Y) ⊂ I1(Y · ϕ1). Suppose that G /∈ (b, I1(Y · ϕ1), T ). The latter is a prime ideal,
hence F(X) ∈ (b, I1(Y · ϕ1), T ). By the definition of T there exists H(Y) ∈ k[Y] \ b such that
H(Y)F (X) ∈ (b, I1(Y · ϕ1)). Evaluating Y �→ f would give H(f)F (X) = 0 whence F(X) = 0
since H(f) = 0; this is a contradiction.

To conclude we count dimensions according to [13], thereby finding

dimS + rankS(E ⊗k[Y] S) = n + 1 + 1.

Since dimS = n + 1 by assumption, we get rankS(E ⊗k[Y] S) = 1, hence rankS(ρ ⊗k[Y] S) = n.
Since Im(ρ ⊗k[Y] S) ⊂ Im(ψ) for a weak Jacobian dual matrix ψ over S, Theorem 2.18 ap-
plies. �

Easy examples show that even if m = n and the forms f generate a linearly presented ideal
– i.e., ϕ is linear – they can turn out to be algebraically dependent. Perhaps the simplest is the
map F : P

3 ��� P
3 defined by the 2-forms X0X2, X0X3, X1X2, X1X3. At the other end of

the spectrum, it is obvious (and easy) that algebraic independence does not imply anything in
particular concerning the rank of ϕ1. Therefore the two conditions of the proposition are pretty
much mutually independent.
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The following example gives an illustration of the above proposition.

Example 3.3. Consider the map F : P
5 ��� P

5 defined by the 3-forms

X0X1X2, X0X2X3, X0X4X5, X1X2X4, X2X3X5, X3X4X5.

Since these are square-free monomials, it is fairly easy to compute the matrix ϕ1, which is here
of maximal rank (= 5). In fact, ϕ1 generates a free submodule. A computation with Macaulay [1]
yields that (notation as above) the three algebras S(coker(ϕ1)), S(I ) and R(I ) are all different
though of the same dimension. In particular, I is not of linear type. The base ideal of the inverse
of F is generated by 4-forms, so this degree is one less than the expected degree were I of linear
type (cf. Theorem 3.4 and its supplement).

In the case of rational maps defined by monomials as this, there is a blind (i.e., algorithmic)
way to both testing birationality and obtaining the coordinates of the inverse map (see [17]).

In the remaining of the section, following the classical terminology, we say that a Cremona
map has degree r if it is defined by forms of degree r generating an ideal of codimension � 2.

One can prove the converse to the linear obstruction result ([9, Proposition 3.5]) in any char-
acteristic.

Proposition 3.4. Let F : P
n ��� P

n be a rational map whose base ideal I is of linear type. The
following conditions are equivalent:

(a) F is a Cremona transformation.
(b) The linear syzygy matrix ϕ1 has rank n.

Moreover, if these conditions take place, the inverse map F−1 has degree � n.

Proof. The implication (a) ⇒ (b) has already been observed in [9, Proposition 3.5].
The reverse implication (b) ⇒ (a) comes from Theorem 3.2 since the linear type assumption

for an ideal generated by forms of the same degree implies at least the algebraic independence
of these forms.

The last assertion follows from part (ii) of the supplement to Theorem 2.18. Indeed, the trans-
pose of an n×(n+1) matrix of rank n formed by linear syzygies of I can be taken as a submatrix
of a weak Jacobian dual matrix of F. Since the signed n-minors of this matrix define the inverse
to F, the degree bound is clear. �

The conjectured statements [9, Corollaries 3.8 through 3.10] become true statements in any
characteristic which we briefly restate for convenience and reference.

Corollary 3.5. Let F : P
n ��� P

n be a rational map whose base ideal I is a one-dimensional
locally complete intersection at its minimal primes. Then F defines a Cremona transformation of
P

n if and only if the linear syzygy matrix ϕ1 has rank n.

Proof. The result follows because the assumption in the one-dimensional case means that the
ideal is of linear type (see [14, Proposition 3.7], also [4, Remark 10.5]). �
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In particular, this applies to the case of plane rational maps, thereby yielding a strong outcome:

Corollary 3.6. Let F : P
2 ��� P

2 be a rational map whose base ideal scheme is a codimension
2 locally complete intersection. Then F is a Cremona map if and only if is defined by the 2 × 2
minors of a 3 × 2 matrix of linear forms.

Proof. Suppose that F is Cremona. By Proposition 3.4, the inverse map is of degree � 2. Since
we are in the plane case, F has also degree � 2. Therefore, as the base ideal is of codimension 2,
the map is one of the three classical types of quadratic Cremona maps, in which case the result
is directly verified.

The converse follows directly from the previous corollary. �
Question 3.7. Let f ∈ k[X0,X1,X2] be a reduced homogeneous polynomial whose polar map
is a Cremona map. Is the ideal generated by the partial derivatives of f locally a complete
intersection at its minimal primes?

The answer is positive in characteristic zero due to the theorem of Dolgachev [3]. However,
even in null characteristic an independent proof would be of interest as it would imply Dol-
gachev’s result by way of Corollary 3.6.

Remark 3.8. In the plane case (n = 2), the above local condition on the base ideal is also equiva-
lent to requiring that its nth Fitting ideal I1(ϕ) have codimension three, so the condition is easily
verified by computation.

3.3. The semilinear generation degree

In this part we raise a few questions related to certain special behavior of the rational map
vis-à-vis its base ideal I ⊂ R.

Proposition 3.9. Let F : P
n ��� P

m be a rational map and let W ⊂ P
m denote its image. If the

codimension of the ideal (J1,∗) over the ring (k[Y]/I (W))[X] is at least n then F is birational
onto W .

Proof. By Theorem 2.20, it suffices to show that the rank of the Jacobian dual matrix ψ over
S := k[Y]/I (W) is at least n (hence = n).

For this note that if C := cokerS(ψt ), then the symmetric algebra SS(C) � S[X]/I1(X · ψt).
In addition, by the very definition, (J1,∗)S[X] = I1(X · ψt). It follows that

dim SS(C) � dimS + n + 1 − ht(J1,∗)S[X] � dimS + n + 1 − n = dimS + 1.

On the other hand, dim SS(C) � dim RS(C) = dimS + rankS(C), where RS(C) stands for the
Rees algebra of C. From this rankS(C) � 1, hence rankS(ψ) = rankS(ψt ) � n. �

Regarding the above proof, one sees that since rankS(ψ) = n then actually rankS(C) = 1. In
this notation, the inverse map to F is defined by the coordinates of any nonzero homogeneous
vector in the dual module C∗.
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The converse statement to the effect that rankS(ψ) = n over k[Y]/I (W) implies that the codi-
mension of (J1,∗) over (k[Y]/I (W))[X] is at least n is generally false, even for Cremona maps.
The reason is simply given by the fact that there are Cremona maps for which the symmetric
algebra of the base ideal has larger dimension than its Rees algebra. No such examples exist for
plane Cremona maps as the base ideal is an almost complete intersection. For space Cremona
maps, however, even monomial involutions may show this behavior as the following example
conveys.

Example 3.10. Let F = (X4 : X2YW : XY 2Z : Y 3Z) : P
3 ��� P

3. Then (J1,∗) ⊂ k[X,Y] has
codimension 2, i.e., dim S(I ) = 6, while rankψ = 3 as the map is Cremona. Here of course
rank(ϕ1) < 3 (actually rank(ϕ1) = 1 by calculation). We note that this Cremona map is an invo-
lution up to permutation in the source and in the target. A different approach to verify birationality
can be applied in this example since the base ideal is generated by monomials (see [17]).

In connection to Proposition 3.9, the following numerical invariant seems worth looking at.

Definition 3.11. The SEMILINEAR GENERATION DEGREE of an ideal I ⊂ R = k[X], denoted
sgd(I ), is the minimum s � 1 such that (J1,∗) = (J1,�s), where the ideal on the right side is the
subideal generated by all (“semilinear”) relations of bidegree (1, r) with r � s.

A souped-up version would require only ht(J1,∗) = ht(J1,�s), in which case the invariant
could be dubbed the SEMILINEAR CODIMENSION DEGREE.

This numerical invariant expresses the measure of how far off through the successive powers
Im of the ideal I one has to go in order to pick a sufficient number of linear syzygies of Im to
generate the ideal (J1,∗). In case I is actually the base ideal of a Cremona map then this number
may have bearing to the degree of the coordinates of the inverse map. Here is a very crude lower
bound:

Proposition 3.12. Let I ⊂ k[X] denote the base ideal of a Cremona map F : P
n ��� P

n. Then
sgd(I ) � deg(F−1)/n, where degF−1 denotes the degree of the defining coordinates of the in-
verse map.

Proof. Using item (ii) of Theorem 2.20 one immediately has degF−1 � sgd(I )n, as re-
quired. �

For instance, if I is of linear type then degF−1 � n, a property already observed in Proposi-
tion 3.4.

Question 3.13. Find upper bounds for sgd I in terms of other invariants of I .

A related question was raised by Vasconcelos in connection with elimination theory. Note that
the above numerical invariant makes sense even for a general rational map with target some P

m.

Question 3.14. Let more generally F : P
n ��� P

m be a rational map, given by m + 1 k-linearly
independent forms f = {f0, . . . , fm} ⊂ k[X] of a fixed degree � 2, without proper common factor.
Let I = (f0, . . . , fm) denote as above the base ideal of F and let d denote the highest degree of
a minimal form defining the image of F in P

m. Is sgd(I ) � d?
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Note that the answer is trivially affirmative for ideals of fiber type. There is both theoreti-
cal and computational evidence for an affirmative answer in the case of an X-primary almost
complete intersection (see [5]).
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