807 research outputs found
Successive Combination Jet Algorithm For Hadron Collisions
Jet finding algorithms, as they are used in and hadron collisions,
are reviewed and compared. It is suggested that a successive combination style
algorithm, similar to that used in physics, might be useful also in
hadron collisions, where cone style algorithms have been used previously.Comment: 18 pages plus four uuencoded postscript figures, REVTEX 3.0,
CERN-TH.6860/9
Dijet Production at Large Rapidity Intervals
We examine dijet production at large rapidity intervals at Tevatron energies,
by using the theory of Lipatov and collaborators which resums the leading
powers of the rapidity interval. We analyze the growth of the Mueller-Navelet
-factor in this context and find it to be negligible. However, we do find a
considerable enhancement of jet production at large transverse momenta. In
addition, we show that the correlation in transverse momentum and azimuthal
angle of the tagging jets fades away as the rapidity interval is increased.Comment: 12 pages, preprint DESY 93-139, SCIPP 93/3
Single-Inclusive Jet Production in Polarized pp Collisions at O(alpha_s^3)
We present a next-to-leading order QCD calculation for single-inclusive
high-p_T jet production in longitudinally polarized pp collisions within the
``small-cone'' approximation. The fully analytical expressions obtained for the
underlying partonic hard-scattering cross sections greatly facilitate the
analysis of upcoming BNL-RHIC data on the double-spin asymmetry A_{LL}^{jet}
for this process in terms of the unknown polarization of gluons in the nucleon.
We simultaneously rederive the corresponding QCD corrections to unpolarized
scattering and confirm the results existing in the literature. We also
numerically compare to results obtained with Monte-Carlo methods and assess the
range of validity of the ``small-cone'' approximation for the kinematics
relevant at BNL-RHIC.Comment: 23 pages, 8 eps-figure
Analytic Structure of Three-Mass Triangle Coefficients
``Three-mass triangles'' are a class of integral functions appearing in
one-loop gauge theory amplitudes. We discuss how the complex analytic
properties and singularity structures of these amplitudes can be combined with
generalised unitarity techniques to produce compact expressions for three-mass
triangle coefficients. We present formulae for the N=1 contributions to the
n-point NMHV amplitude.Comment: 22 pages; v3: NMHV n=point expression added. 7 point expression
remove
FastJet user manual
FastJet is a C++ package that provides a broad range of jet finding and
analysis tools. It includes efficient native implementations of all widely used
2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as
well as access to 3rd party jet algorithms through a plugin mechanism,
including all currently used cone algorithms. FastJet also provides means to
facilitate the manipulation of jet substructure, including some common boosted
heavy-object taggers, as well as tools for estimation of pileup and
underlying-event noise levels, determination of jet areas and subtraction or
suppression of noise in jets.Comment: 69 pages. FastJet 3 is available from http://fastjet.fr
Diverse pollination systems of the twin-spurred orchid genus Satyrium in African grasslands
The large terrestrial orchid genus Satyrium underwent evolutionary radiations in the Cape floral region and the grasslands of southern and eastern Africa. These radiations were accompanied by tremendous diversification of the unusual twin-spurred flowers that characterize the genus, but pollination data required to interpret these patterns of floral evolution have been lacking for grassland species in the genus. Here we document pollinators, nectar properties, and levels of pollination success for 11 grassland Satyrium species in southern and south-central Africa. Pollinators of these species include bees, beetles, butterflies, hawkmoths, noctuid moths, long-proboscid flies, and sunbirds. Most species appear to be specialized for pollination by one functional pollinator group. Long-proboscid fly pollination systems are reported for the first time in Satyrium (in S. macrophyllum and a high-altitude form of S. neglectum). Floral morphology, especially spur length and rostellum structure, differs markedly among plants with different pollinators, while nectar volume, concentration, and sugar composition are fairly uniform across species. Most taxa exhibited high levels of pollination success (>50% of flowers pollinated), a trend that can be attributed to the presence of nectar in the twin spurs
Amplitudes and Spinor-Helicity in Six Dimensions
The spinor-helicity formalism has become an invaluable tool for understanding
the S-matrix of massless particles in four dimensions. In this paper we
construct a spinor-helicity formalism in six dimensions, and apply it to derive
compact expressions for the three, four and five point tree amplitudes of
Yang-Mills theory. Using the KLT relations, it is a straightforward process to
obtain amplitudes in linearized gravity from these Yang-Mills amplitudes; we
demonstrate this by writing down the gravitational three and four point
amplitudes. Because there is no conserved helicity in six dimensions, these
amplitudes describe the scattering of all possible polarization states (as well
as Kaluza-Klein excitations) in four dimensions upon dimensional reduction. We
also briefly discuss a convenient formulation of the BCFW recursion relations
in higher dimensions.Comment: 26 pages, 2 figures. Minor improvements of the discussio
Jets in Deep Inelastic Scattering and High Energy Photoproduction at HERA
Recent results on jet production in neutral current deep inelastic scattering
and high energy photoproduction at the HERA electron-proton-collider are
briefly reviewed. The results are compared to QCD expectations in NLO and
determinations using these data are summarized.Comment: 12 pages, 10 figures, talk given at the 9th Adriatic Meeting
"Particle Physics and the Universe" in Dubrovnik/Croatia, 4.-24.9.200
CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes
We present a program that implements the OPP reduction method to extract the
coefficients of the one-loop scalar integrals from a user defined
(sub)-amplitude or Feynman Diagram, as well as the rational terms coming from
the 4-dimensional part of the numerator. The rational pieces coming from the
epsilon-dimensional part of the numerator are treated as an external input, and
can be computed with the help of dedicated tree-level like Feynman rules.
Possible numerical instabilities are dealt with the help of arbitrary
precision routines, that activate only when needed.Comment: Version published in JHE
Prospects for the Measurement of the Higgs Yukawa Couplings to b and c quarks, and muons at CLIC
The investigation of the properties of the Higgs boson, especially a test of
the predicted linear dependence of the branching ratios on the mass of the
final state is going to be an integral part of the physics program at colliders
at the energy frontier for the foreseeable future. The large Higgs boson
production cross section at a 3TeV CLIC machine allows for a precision
measurement of the Higgs branching ratios. The cross section times branching
ratio of the decays H->bb, H->cc and H->{\mu}{\mu} of a Standard Model Higgs
boson with a mass of 120 GeV can be measured with a statistical uncertainty of
0.23%, 3.1% and 15%, respectively, assuming an integrated luminosity of 2 ab-1.Comment: 6 pages, 4 figure
- …
