45 research outputs found

    Theory of shot noise in space-charge limited diffusive conduction regime

    Full text link
    As is well known, the fluctuations from a stable stationary nonequilibrium state are described by a linearized nonhomogeneous Boltzmann-Langevin equation. The stationary state itself may be described by a nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is actually a unique way to obtain a linear equation for the fluctuations. In the present paper we treat as an example an analytical theory of nonequilibrium shot noise in a diffusive conductor under the space charge limited regime. Our approach is compared with that of Schomerus, Mishchenko and Beenakker [Phys. Rev. B 60, 5839 (1999)]. We find some difference between the present theory and the approach of their paper and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the theory of fluctuation phenomena in a nonequilibrium electron gas.Comment: 17 pages, no figure

    Propagation of coherent waves in elastically scattering media

    Full text link
    A general method for calculating statistical properties of speckle patterns of coherent waves propagating in disordered media is developed. It allows one to calculate speckle pattern correlations in space, as well as their sensitivity to external parameters. This method, which is similar to the Boltzmann-Langevin approach for the calculation of classical fluctuations, applies for a wide range of systems: From cases where the ray propagation is diffusive to the regime where the rays experience only small angle scattering. The latter case comprises the regime of directed waves where rays propagate ballistically in space while their directions diffuse. We demonstrate the applicability of the method by calculating the correlation function of the wave intensity and its sensitivity to the wave frequency and the angle of incidence of the incoming wave.Comment: 19 pages, 5 figure

    Thermal Fluctuations of the Electric Field in the Presence of Carrier Drift

    Full text link
    We consider a semiconductor in a non-equilibrium steady state, with a dc current. On top of the stationary carrier motion there are fluctuations. It is shown that the stationary motion of the carriers (i.e., their drift) can have a profound effect on the electromagnetic field fluctuations in the bulk of the sample as well as outside it, close to the surface (evanescent waves in the near field). The effect is particularly pronounced near the plasma frequency. This is because drift leads to a significant modification of the dispersion relation for the bulk and surface plasmons.Comment: Comments are welcom

    Zero bias anomaly out of equilibrium

    Full text link
    The non-equilibrium zero bias anomaly (ZBA) in the tunneling density of states of a diffusive metallic film is studied. An effective action describing virtual fluctuations out-of-equilibrium is derived. The singular behavior of the equilibrium ZBA is smoothed out by real processes of inelastic scattering.Comment: 4 page

    Radiative transfer theory for vacuum fluctuations

    Get PDF
    A semiclassical kinetic theory is presented for the fluctuating photon flux emitted by a disordered medium in thermal equilibrium. The kinetic equation is the optical analog of the Boltzmann-Langevin equation for electrons. Vacuum fluctuations of the electromagnetic field provide a new source of fluctuations in the photon flux, over and above the fluctuations due to scattering. The kinetic theory in the diffusion approximation is applied to the super-Poissonian noise due to photon bunching and to the excess noise due to beating of incident radiation with the vacuum fluctuations.Comment: 4 pages, 2 figures, revised version according to referee's comment

    Spin noise in quantum dot ensembles

    Full text link
    We study theoretically spin fluctuations of resident electrons or holes in singly charged quantum dots. The effects of external magnetic field and effective fields caused by the interaction of electron and nuclei spins are analyzed. The fluctuations of spin Faraday, Kerr and ellipticity signals revealing the spin noise of resident charge carriers are calculated for the continuous wave probing at the singlet trion resonance.Comment: 8 pages, 4 figure

    Semi-classical Theory of Conductance and Noise in Open Chaotic Cavities

    Full text link
    Conductance and shot noise of an open cavity with diffusive boundary scattering are calculated within the Boltzmann-Langevin approach. In particular, conductance contains a non-universal geometric contribution, originating from the presence of open contacts. Subsequently, universal expressions for multi-terminal conductance and noise valid for all chaotic cavities are obtained classically basing on the fact that the distribution function in the cavity depends only on energy and using the principle of minimal correlations.Comment: 4 pages, 1 .eps figur

    Coulomb screening in mesoscopic noise: a kinetic approach

    Full text link
    Coulomb screening, together with degeneracy, is characteristic of the metallic electron gas. While there is little trace of its effects in transport and noise in the bulk, at mesoscopic scales the electronic fluctuations start to show appreciable Coulomb correlations. Within a strictly standard Boltzmann and Fermi-liquid framework, we analyze these phenomena and their relation to the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two distinct screening mechanisms for mesoscopic fluctuations. One is the self-consistent response of the contact potential in a non-uniform system. The other couples to scattering, and is an exclusively non-equilibrium process. Contact-potential effects renormalize all thermal fluctuations, at all scales. Collisional effects are relatively short-ranged and modify non-equilibrium noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication in J. Phys.: Cond. Ma
    corecore