808 research outputs found

    Anomalous diffusion originated by two Markovian hopping-trap mechanisms

    Get PDF
    We show through intensive simulations that the paradigmatic features of anomalous diffusion are indeed the features of a (continuous-time) random walk driven by two different Markovian hopping-trap mechanisms. If p∈(0,1/2)p \in (0,1/2) and 1−p1-p are the probabilities of occurrence of each Markovian mechanism, then the anomalousness parameter ÎČ∈(0,1)\beta \in (0,1) results to be ÎČ≃1−1/{1+log⁥[(1−p)/p]}\beta \simeq 1 - 1/\{1 + \log[(1-p)/p]\}. Ensemble and single-particle observables of this model have been studied and they match the main characteristics of anomalous diffusion as they are typically measured in living systems. In particular, the celebrated transition of the walker's distribution from exponential to stretched-exponential and finally to Gaussian distribution is displayed by including also the Brownian yet non-Gaussian interval.BERC 2018–2021 BERC 2022–2025 MOSAIC project DIT.AD004.14

    Fractional Diffusion and Medium Heterogeneity: The Case of the Continuos Time Random Walk

    Get PDF
    In this contribution we show that fractional diffusion emerges from a simple Markovian Gaussian random walk when the medium displays a power-law heterogeneity. Within the framework of the continuous time random walk, the heterogeneity of the medium is represented by the selection, at any jump, of a different time-scale for an exponential survival probability. The resulting process is a non-Markovian non-Gaussian random walk. In particular, for a power-law distribution of the time-scales, the resulting random walk corresponds to a time-fractional diffusion process. We relates the power-law of the medium heterogeneity to the fractional order of the diffusion. This relation provides an interpretation and an estimation of the fractional order of derivation in terms of environment heterogeneity. The results are supported by simulations

    Higgs-Mediated tau --> mu and tau --> e transitions in II Higgs doublet Model and Supersymmetry

    Full text link
    We study the phenomenology of the mu-tau and e-tau lepton flavour violation (LFV) in a general two Higgs Doublet Model (2HDM) including the supersymmetric case. We consider several LFV decay modes of the charged fermion tau, namely tau-> l_jgamma, tau->l_j l_k l_k and tau-> l_jeta. The predictions and the correlations among the rates of the above processes are computed. In particular, it is shown that tau->l_jgamma processes are the most sensitive channels to Higgs-mediated LFV specially if the splitting among the neutral Higgs bosons masses is not below the 10% level.Comment: v2=published version: 13 pages, 4 figures, text improved and reference added. Two loop effects (relevant for tau->l_jgamma) added. Conclusions unchange

    Search for Tau Flavour Violation at the LHC

    Full text link
    We explore the prospects for searches at the LHC for sparticle decays that violate τ\tau lepton number, in the light of neutrino oscillation data and the seesaw model for neutrino masses and mixing. We analyse the theoretical and phenomenological conditions required for tau flavour violation to be observable in \chi_2 \to \chi + \tau^\pm \mu^\mp decays, for cosmologically interesting values of the relic neutralino LSP density. We study the relevant supersymmetric parameter space in the context of the Constrained Minimal Supersymmetric Extension of the Standard Model (CMSSM) and in SU(5) extensions of the theory. We pay particular attention to the possible signals from hadronic tau decays, that we analyse using PYTHIA event simulation. We find that a signal for \tau flavour-violating \chi_2 decays may be observable if the branching ratio exceeds about 10%. This may be compatible with the existing upper limit on \tau \to \mu \gamma decays if there is mixing between right-handed sleptons, as could be induced in non-minimal SU(5) GUTs.Comment: 24 pages, 10 fig

    Langevin equation in complex media and anomalous diffusion

    Get PDF
    The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modelling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can also be somewhat alternative to each other, e.g. continuous time random walk and fractional Brownian motion. To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modelling of velocity dynamics. The complexity of the medium is parametrized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particle’s dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.V.S. acknowledges BCAM Internship Program, Bilbao, for the financial support to her internship research period during which she developed her master’s thesis research useful for her master’s degree in Physics at University of Bologna. S.V. acknowledges the University of Bologna for the financial support through the ‘Marco Polo Programme’ for her PhD research period abroad spent at BCAM, Bilbao, useful for her PhD degree in Physics at University of Bologna. P.P. acknowledges financial support from Bizkaia Talent and European Commission through COFUND scheme, 2015 Financial Aid Program for Researchers, project number AYD–000–252 hosted at BCAM, Bilbao

    Model-independent Analysis of Lepton Flavour Violating Tau Decays

    Full text link
    Many models for physics beyond the Standard Model predict lepton-flavour violating decays of charged leptons at a level which may become observable very soon. In the present paper we investigate the decays of a Tau into three charged leptons in a generic way, based on effective-field-theory methods, where the relevant operators are classified according to their chirality structure. We work out the decay distributions and discuss phenomenological implications.Comment: 14 pages, 10 figures, references and comments adde

    Waiting for mu->eg from the MEG experiment

    Full text link
    The Standard Model (SM) predictions for the lepton flavor-violating (LFV) processes like mu->eg are well far from any realistic experimental resolution, thus, the appearance of m->eg at the running MEG experiment would unambiguously point towards a New Physics (NP) signal. In this article, we discuss the phenomenological implications in case of observation/improved upper bound on m->eg at the running MEG experiment for supersymmetric (SUSY) scenarios with a see-saw mechanism accounting for the neutrino masses. We outline the role of related observables to m->eg in shedding light on the nature of the SUSY LFV sources providing useful tools i) to reconstruct some fundamental parameters of the neutrino physics and ii) to test whether an underlying SUSY Grand Unified Theory (GUT) is at work. The perspectives for the detection of LFV signals in tau decays are also discussed.Comment: 15 pages, 12 figure

    Centre-of-mass like superposition of Ornstein-Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion

    Get PDF
    We consider an ensemble of Ornstein–Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding to this ensemble is statistically equivalent to a process driven by a non-autonomous stochastic differential equation with time-dependent drift and a white noise. In particular, the time scaling and the density function of such variable are driven by the population of timescales and of noise amplitudes, respectively. Moreover, we show that this variable is equivalent in distribution to a randomly-scaled Gaussian process, i.e., a process built by the product of a Gaussian process times a non-negative independent random variable. This last result establishes a connection with the so-called generalized grey Brownian motion and suggests application to model fractional anomalous diffusion in biological systems.”Marco Polo Programme” (University of Bologna

    Constraints on the rare tau decays from mu --> e gamma in the supersymmetric see-saw model

    Full text link
    It is now a firmly established fact that all family lepton numbers are violated in Nature. In this paper we discuss the implications of this observation for future searches for rare tau decays in the supersymmetric see-saw model. Using the two loop renormalization group evolution of the soft terms and the Yukawa couplings we show that there exists a lower bound on the rate of the rare process mu --> e gamma of the form BR(mu --> e gamma) > C BR(tau --> mu gamma) BR(tau --> e gamma), where C is a constant that depends on supersymmetric parameters. Our only assumption is the absence of cancellations among the high-energy see-saw parameters. We also discuss the implications of this bound for future searches for rare tau decays. In particular, for large regions of the mSUGRA parameter space, we show that present B-factories could discover either tau --> mu gamma or tau --> e gamma, but not both.Comment: 39 pages, 7 figures. Typos corrected, references adde
    • 

    corecore