9,077 research outputs found

    Determination of mass of IGR J17091-3624 from "Spectro-Temporal" variations during onset-phase of the 2011 outburst

    Full text link
    The 2011 outburst of the black hole candidate IGR J17091-3624 followed the canonical track of state transitions along with the evolution of Quasi-Periodic Oscillation (QPO) frequencies before it began exhibiting various variability classes similar to GRS 1915+105. We use this canonical evolution of spectral and temporal properties to determine the mass of IGR J17091-3624, using three different methods, viz : Photon Index (Γ\Gamma) - QPO frequency (ν\nu) correlation, QPO frequency (ν\nu) - Time (day) evolution and broadband spectral modelling based on Two Component Advective Flow. We provide a combined mass estimate for the source using a Naive Bayes based joint likelihood approach. This gives a probable mass range of 11.8 M_{\odot} - 13.7 M_{\odot}. Considering each individual estimate and taking the lowermost and uppermost bounds among all three methods, we get a mass range of 8.7 M_{\odot} - 15.6 M_{\odot} with 90% confidence. We discuss the probable implications of our findings in the context of two component accretion flow.Comment: 10 pages, 5 figures (4 in colour), 2 tables. Accepted for publication in Ap

    Anti-isospectral Transformations, Orthogonal Polynomials and Quasi-Exactly Solvable Problems

    Get PDF
    We consider the double sinh-Gordon potential which is a quasi-exactly solvable problem and show that in this case one has two sets of Bender-Dunne orthogonal polynomials . We study in some detail the various properties of these polynomials and the corresponding quotient polynomials. In particular, we show that the weight functions for these polynomials are not always positive. We also study the orthogonal polynomials of the double sine-Gordon potential which is related to the double sinh-Gordon case by an anti-isospectral transformation. Finally we discover a new quasi-exactly solvable problem by making use of the anti-isospectral transformation.Comment: Revtex, 19 pages, No figur

    Incommensurate, helical spin ground states on the Hollandite lattice

    Full text link
    We present a model of classical Heisenberg spins on a Hollandite lattice, which has been developed to describe the magnetic properties of α\alpha-MnO2_2 and similar compounds. The model has nearest neighbor interacting spins, however the strength and the sign of spin-spin interactions is anisotropic and depends on the nature of the bonds. Our analysis shows that the Hollandite lattice supports four different incommensurate and helical magnetic ground states depending on the relative strengths and signs of spin-spin interactions. We show that the incommensurate helical ground states appear due to the geometrical frustration present in the model. We demonstrate that each of the four helical incommensurate magnetic phases are continuously connected to four different collinear antiferromagnetic ground states as the strength of spin-spin interaction along some bonds is increased. The present results give support to the presence of helical states that have been previously suggested experimentally for Hollandite compounds. We provide an in-depth analysis of the magnetic form factors for each helical phase and describe how it could be used to identify each of these phases in neutron diffraction experiments.Comment: 11 pages, 8 figure

    Giant magnetothermal conductivity and magnetostriction effect in charge ordered Nd0.8_{0.8}Na0.2_{0.2}MnO3_{3} compound

    Full text link
    We present results on resistivity (ρ\rho), magnetization (MM), thermal conductivity (κ\kappa), magnetostriction (ΔLL(0)\frac{\Delta L}{L(0)}) and specific heat (CpC_{p}) of charge-orbital ordered antiferromagnetic Nd0.8_{0.8}Na0.2_{0.2}MnO3_{3} compound. Magnetic field-induced antiferromagnetic/charge-orbital ordered insulating to ferromagnetic metallic transition leads to giant magnetothermal conductivity and magnetostriction effect. The low-temperature irreversibility behavior in ρ\rho, MM, κ\kappa and ΔLL(0)\frac{\Delta L}{L(0)} due to field cycling together with striking similarity among the field and temperature dependence of these parameters manifest the presence of strong and complex spin-charge-lattice coupling in this compound. The giant magnetothermal conductivity is attributed mainly to the suppression of phonon scattering due to the destabilization of spin fluctuations and static/dynamic Jahn-Teller distortion by the application of magnetic field.Comment: 4 Pages, 4 Figure

    The effect of substituted benzene dicarboxylic acid linkers on the optical band gap energy and magnetic coupling in manganese trimer metal organic frameworks

    Get PDF
    We have systematically studied a series of eight metal-organic frameworks (MOFs) in which the secondary building unit is a manganese trimer cluster, and the linkers are differently substituted benzene dicarboxylic acids (BDC). The optical band gap energy of the compounds vary from 2.62 eV to 3.57 eV, and theoretical studies find that different functional groups result in new states in the conduction band, which lie in the gap and lower the optical band gap energy. The optical absorption between the filled Mn 3d states and the ligands is weak due to minimal overlap of the states, and the measured optical band gap energy is due to transitions on the BDC linker. The Mn atoms in the MOFs have local moments of 5 mu B, and selected MOFs are found to be antiferromagnetic, with weak coupling between the cluster units, and paramagnetic above 10 K
    corecore