research

Giant magnetothermal conductivity and magnetostriction effect in charge ordered Nd0.8_{0.8}Na0.2_{0.2}MnO3_{3} compound

Abstract

We present results on resistivity (ρ\rho), magnetization (MM), thermal conductivity (κ\kappa), magnetostriction (ΔLL(0)\frac{\Delta L}{L(0)}) and specific heat (CpC_{p}) of charge-orbital ordered antiferromagnetic Nd0.8_{0.8}Na0.2_{0.2}MnO3_{3} compound. Magnetic field-induced antiferromagnetic/charge-orbital ordered insulating to ferromagnetic metallic transition leads to giant magnetothermal conductivity and magnetostriction effect. The low-temperature irreversibility behavior in ρ\rho, MM, κ\kappa and ΔLL(0)\frac{\Delta L}{L(0)} due to field cycling together with striking similarity among the field and temperature dependence of these parameters manifest the presence of strong and complex spin-charge-lattice coupling in this compound. The giant magnetothermal conductivity is attributed mainly to the suppression of phonon scattering due to the destabilization of spin fluctuations and static/dynamic Jahn-Teller distortion by the application of magnetic field.Comment: 4 Pages, 4 Figure

    Similar works