1,893 research outputs found

    Anisotropic Aerogels for Studying Superfluid 3^3He

    Full text link
    It may be possible to stabilize new superfluid phases of 3^{3}He with anisotropic silica aerogels. We discuss two methods that introduce anisotropy in the aerogel on length scales relevant to superfluid 3^{3}He. First, anisotropy can be induced with uniaxial strain. A second method generates anisotropy during the growth and drying stages. We have grown cylindrical \sim98% aerogels with anisotropy indicated by preferential radial shrinkage after supercritical drying and find that this shrinkage correlates with small angle x-ray scattering (SAXS). The growth-induced anisotropy was found to be 90\sim90^\circ out of phase relative to that induced by strain. This has implications for the possible stabilization of superfluid phases with specific symmetry.Comment: 6 pages, 4 figures, submitted to Quantum Fluids and Solids (QFS) conference 200

    The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation

    Get PDF
    One of the most remarkable manifestations of plant evolution is the diversity for floral branching systems. These "inflorescences" arise from stem cell populations in shoot meristems that mature gradually to reproductive states in response to environmental and endogenous signals. The morphology of the shoot meristem maturation process is conserved across distantly related plants, raising the question of how diverse inflorescence architectures arise from seemingly common maturation programs. In tomato and related nightshades (Solanaceae), inflorescences range from solitary flowers to highly branched structures bearing hundreds of flowers. Since reproductive barriers between even closely related Solanaceae have precluded a genetic dissection, we captured and compared meristem maturation transcriptomes from five domesticated and wild species reflecting the evolutionary continuum of inflorescence complexity. We find these divergent species share hundreds of dynamically expressed genes, enriched for transcription factors. Meristem stages are defined by distinct molecular states and point to modified maturation schedules underlying architectural variation. These modified schedules are marked by a peak of transcriptome expression divergence during the reproductive transition, driven by heterochronic shifts of dynamic genes, including transcriptional regulators with known roles in flowering. Thus, evolutionary diversity in Solanaceae inflorescence complexity is determined by subtle modifications of transcriptional programs during a critical transitional window of meristem maturation, which we propose underlies similar cases of plant architectural variation. More broadly, our findings parallel the recently described transcriptome "inverse hourglass" model for animal embryogenesis, suggesting both plant and animal morphological variation is guided by a mid-development period of transcriptome divergence

    Magnetoresistance of UPt3

    Full text link
    We have performed measurements of the temperature dependence of the magnetoresistance up to 9 T in bulk single crystals of UPt3 with the magnetic field along the b axis, the easy magnetization axis. We have confirmed previous results for transverse magnetoresistance with the current along the c axis, and report measurements of the longitudinal magnetoresistance with the current along the b axis. The presence of a linear term in both cases indicates broken orientational symmetry associated with magnetic order. With the current along the c axis the linear term appears near 5 K, increasing rapidly with decreasing temperature. For current along the b axis the linear contribution is negative.Comment: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006

    On structural properties of the value function for an unbounded jump Markov process with an application to a processor sharing retrial queue

    Get PDF
    The derivation of structural properties for unbounded jump Markov processes cannot be done using standard mathematical tools, since the analysis is hindered due to the fact that the system is not uniformizable. We present a promising technique, a smoothed rate truncation method, to overcome the limitations of standard techniques and allow for the derivation of structural properties. We introduce this technique by application to a processor sharing queue with impatient customers that can retry if they renege. We are interested in structural properties of the value function of the system as a function of the arrival rate

    Genes regulated by estrogen in breast tumor cells in vitro are similarly regulated in vivo in tumor xenografts and human breast tumors

    Get PDF
    BACKGROUND: Estrogen plays a central role in breast cancer pathogenesis. Although many studies have characterized the estrogen regulation of genes using in vitro cell culture models by global mRNA expression profiling, it is not clear whether these genes are similarly regulated in vivo or how they might be coordinately expressed in primary human tumors. RESULTS: We generated DNA microarray-based gene expression profiles from three estrogen receptor α (ERα)-positive breast cancer cell lines stimulated by 17β-estradiol (E2) in vitro over a time course, as well as from MCF-7 cells grown as xenografts in ovariectomized athymic nude mice with E2 supplementation and after its withdrawal. When the patterns of genes regulated by E2 in vitro were compared to those obtained from xenografts, we found a remarkable overlap (over 40%) of genes regulated by E2 in both contexts. These patterns were compared to those obtained from published clinical data sets. We show that, as a group, E2-regulated genes from our preclinical models were co-expressed with ERα in a panel of ERα+ breast tumor mRNA profiles, when corrections were made for patient age, as well as with progesterone receptor. Furthermore, the E2-regulated genes were significantly enriched for transcriptional targets of the myc oncogene and were found to be coordinately expressed with Myc in human tumors. CONCLUSION: Our results provide significant validation of a widely used in vitro model of estrogen signaling as being pathologically relevant to breast cancers in vivo

    Compressed Silica Aerogels for the Study of Superfluid 3He

    Full text link
    We have performed Small Angle X-ray Scattering (SAXS) on uniaxially strained aerogels and measured the strain-induced structural anisotropy. We use a model to connect our SAXS results to anisotropy of the 3He quasiparticle mean free path in aerogel.Comment: 2 pages, 2 figures, accepted for publication in the proceedings of the 24th Low Temperature Physics Conferenc
    corecore