5,303 research outputs found

    High dynamic range imaging with a single-mode pupil remapping system : a self-calibration algorithm for redundant interferometric arrays

    Get PDF
    The correction of the influence of phase corrugation in the pupil plane is a fundamental issue in achieving high dynamic range imaging. In this paper, we investigate an instrumental setup which consists in applying interferometric techniques on a single telescope, by filtering and dividing the pupil with an array of single-mode fibers. We developed a new algorithm, which makes use of the fact that we have a redundant interferometric array, to completely disentangle the astronomical object from the atmospheric perturbations (phase and scintillation). This self-calibrating algorithm can also be applied to any - diluted or not - redundant interferometric setup. On an 8 meter telescope observing at a wavelength of 630 nm, our simulations show that a single mode pupil remapping system could achieve, at a few resolution elements from the central star, a raw dynamic range up to 10^6; depending on the brightness of the source. The self calibration algorithm proved to be very efficient, allowing image reconstruction of faint sources (mag = 15) even though the signal-to-noise ratio of individual spatial frequencies are of the order of 0.1. We finally note that the instrument could be more sensitive by combining this setup with an adaptive optics system. The dynamic range would however be limited by the noise of the small, high frequency, displacements of the deformable mirror.Comment: 11 pages, 7 figures. Accepted for publication in MNRA

    Pupil remapping for high contrast astronomy: results from an optical testbed

    Full text link
    The direct imaging and characterization of Earth-like planets is among the most sought-after prizes in contemporary astrophysics, however current optical instrumentation delivers insufficient dynamic range to overcome the vast contrast differential between the planet and its host star. New opportunities are offered by coherent single mode fibers, whose technological development has been motivated by the needs of the telecom industry in the near infrared. This paper presents a new vision for an instrument using coherent waveguides to remap the pupil geometry of the telescope. It would (i) inject the full pupil of the telescope into an array of single mode fibers, (ii) rearrange the pupil so fringes can be accurately measured, and (iii) permit image reconstruction so that atmospheric blurring can be totally removed. Here we present a laboratory experiment whose goal was to validate the theoretical concepts underpinning our proposed method. We successfully confirmed that we can retrieve the image of a simulated astrophysical object (in this case a binary star) though a pupil remapping instrument using single mode fibers.Comment: Accepted in Optics Expres

    Arbitrary state controlled-unitary gate by adiabatic passage

    Full text link
    We propose a robust scheme involving atoms fixed in an optical cavity to directly implement the universal controlled-unitary gate. The present technique based on adiabatic passage uses novel dark states well suited for the controlled-rotation operation. We show that these dark states allow the robust implementation of a gate that is a generalisation of the controlled-unitary gate to the case where the control qubit can be selected to be an arbitrary state. This gate has potential applications to the rapid implementation of quantum algorithms such as of the projective measurement algorithm. This process is decoherence-free since excited atomic states and cavity modes are not populated during the dynamics.Comment: 6 pages, 6 figure, submitted to Phys. Rev.

    CNOT gate by adiabatic passage with an optical cavity

    Full text link
    We propose a scheme for the construction of a CNOT gate by adiabatic passage in an optical cavity. In opposition to a previously proposed method, the technique is not based on fractional adiabatic passage, which requires the control of the ratio of two pulse amplitudes. Moreover, the technique constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided since the dynamics follows dark states.Comment: 6 pages, 4 figures, submitted to EPJ

    Fast SWAP gate by adiabatic passage

    Full text link
    We present a process for the construction of a SWAP gate which does not require a composition of elementary gates from a universal set. We propose to employ direct techniques adapted to the preparation of this specific gate. The mechanism, based on adiabatic passage, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided.Comment: 5 pages, 4 figures, submitted to Phys. Re

    Near-IR imaging of T Cha: evidence for scattered-light disk structures at solar system scales

    Full text link
    T Chamaeleontis is a young star surrounded by a transitional disk, and a plausible candidate for ongoing planet formation. Recently, a substellar companion candidate was reported within the disk gap of this star. However, its existence remains controversial, with the counter-hypothesis that light from a high inclination disk may also be consistent with the observed data. The aim of this work is to investigate the origin of the observed closure phase signal to determine if it is best explained by a compact companion. We observed T Cha in the L and K s filters with sparse aperture masking, with 7 datasets covering a period of 3 years. A consistent closure phase signal is recovered in all L and K s datasets. Data were fit with a companion model and an inclined circumstellar disk model based on known disk parameters: both were shown to provide an adequate fit. However, the absence of expected relative motion for an orbiting body over the 3-year time baseline spanned by the observations rules out the companion model. Applying image reconstruction techniques to each dataset reveals a stationary structure consistent with forward scattering from the near edge of an inclined disk.Comment: 6 pages, 3 figures, accepted for publication in MNRAS Letter

    First direct detection of an exoplanet by optical interferometry. Astrometry and K-band spectroscopy of HR 8799 e

    Get PDF
    Aims. To date, infrared interferometry at best achieved contrast ratios of a few times 10^(−4) on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR 8799, a young planetary system composed of four known giant exoplanets. Methods. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR 8799 e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100 Όas. Results. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of ≈5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150 ± 50 K and a surface gravity of 10^(4.3 ± 0.3) cm s^2. This corresponds to a radius of 1.17_(−0.11)^(+0.13) R_(Jup) and a mass of 10_(−4)^(+7) M_(Jup), which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars

    CubeSats as pathfinders for planetary detection: the FIRST-S satellite

    Full text link
    The idea behind FIRST (Fibered Imager foR a Single Telescope) is to use single-mode fibers to combine multiple apertures in a pupil plane as such as to synthesize a bigger aperture. The advantages with respect to a pure imager are i) relaxed tolerance on the pointing and cophasing, ii) higher accuracy in phase measurement, and iii) availability of compact, precise, and active single-mode optics like Lithium Niobate. The latter point being a huge asset in the context of a space mission. One of the problems of DARWIN or SIM-like projects was the difficulty to find low cost pathfinders missions. But the fact that Lithium Niobate optic is small and compact makes it easy to test through small nanosats missions. Moreover, they are commonly used in the telecom industry, and have already been tested on communication satellites. The idea of the FIRST-S demonstrator is to spatialize a 3U CubeSat with a Lithium Niobate nulling interferometer. The technical challenges of the project are: star tracking, beam combination, and nulling capabilities. The optical baseline of the interferometer would be 30 cm, giving a 2.2 AU spatial resolution at distance of 10 pc. The scientific objective of this mission would be to study the visible emission of exozodiacal light in the habitable zone around the closest stars.Comment: SPIE 2014 -- Astronomical telescopes and instrumentation -- Montrea

    Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry

    Full text link
    Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NACO/VLT at Ks and Lp filters were obtained and analysed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales. However, our model suffers from remaining inconsistencies between SED modelling and the interferometric data. Moreover, the BrG spectroastrometric signal indicates that the core of IRS 9A exhibits some form of complexity such as asymmetries in the disk. Future high-resolution observations are required to confirm the disk/envelope model and to flesh out the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14 figure
    • 

    corecore