4,031 research outputs found
Ultrafast dynamics of finite Hubbard clusters - a stochastic mean-field approach
Finite lattice models are a prototype for strongly correlated quantum systems
and capture essential properties of condensed matter systems. With the dramatic
progress in ultracold atoms in optical lattices, finite fermionic Hubbard
systems have become directly accessible in experiments, including their
ultrafast dynamics far from equilibrium. Here, we present a theoretical
approach that is able to treat these dynamics in any dimension and fully
includes inhomogeneity effects. The method consists in stochastic sampling of
mean-field trajectories and is found to be more accurate and efficient than
current nonequilibrium Green functions approaches. This is demonstrated for
Hubbard clusters with up to 512 particles in one, two and three dimensions
Dynamical Masses in Luminous Infrared Galaxies
We have studied the dynamics and masses of a sample of ten nearby luminous
and ultraluminous infrared galaxies (LIRGS and ULIRGs), using 2.3 micron CO
absorption line spectroscopy and near-infrared H- and Ks-band imaging. By
combining velocity dispersions derived from the spectroscopy, disk
scale-lengths obtained from the imaging, and a set of likely model density
profiles, we calculate dynamical masses for each LIRG. For the majority of the
sample, it is difficult to reconcile our mass estimates with the large amounts
of gas derived from millimeter observations and from a standard conversion
between CO emission and H_2 mass. Our results imply that LIRGs do not have huge
amounts of molecular gas (10^10-10^11 Msolar) at their centers, and support
previous indications that the standard conversion of CO to H_2 probably
overestimates the gas masses and cannot be used in these environments. This in
turn suggests much more modest levels of extinction in the near-infrared for
LIRGs than previously predicted (A_V~10-20 versus A_V~100-1000). The lower gas
mass estimates indicated by our observations imply that the star formation
efficiency in these systems is very high and is triggered by cloud-cloud
collisions, shocks, and winds rather than by gravitational instabilities in
circumnuclear gas disks.Comment: 14 pages, 2 figures, accepted to Ap
From non-symmetric particle systems to non-linear PDEs on fractals
We present new results and challenges in obtaining hydrodynamic limits for
non-symmetric (weakly asymmetric) particle systems (exclusion processes on
pre-fractal graphs) converging to a non-linear heat equation. We discuss a
joint density-current law of large numbers and a corresponding large deviations
principle.Comment: v2: 10 pages, 1 figure. To appear in the proceedings for the 2016
conference "Stochastic Partial Differential Equations & Related Fields" in
honor of Michael R\"ockner's 60th birthday, Bielefel
Concept for classifying facade elements based on material, geometry and thermal radiation using multimodal UAV remote sensing
This paper presents a concept for classification of facade elements, based on the material and the geometry of the elements in addition
to the thermal radiation of the facade with the usage of a multimodal Unmanned Aerial Vehicle (UAV) system. Once the concept is
finalized and functional, the workflow can be used for energy demand estimations for buildings by exploiting existing methods for
estimation of heat transfer coefficient and the transmitted heat loss. The multimodal system consists of a thermal, a hyperspectral and
an optical sensor, which can be operational with a UAV. While dealing with sensors that operate in different spectra and have different
technical specifications, such as the radiometric and the geometric resolution, the challenges that are faced are presented. Addressed
are the different approaches of data fusion, such as image registration, generation of 3D models by performing image matching and the
means for classification based on either the geometry of the object or the pixel values. As a first step towards realizing the concept, the
result from a geometric calibration with a designed multimodal calibration pattern is presented
Towards change detection in urban area by SAR interferometry and radargrammetry
Change detection in urban area is an active topic in remote sensing. However, well-dealt subject in optical remote sensing, this research topic is still at an early stage and needs deeper investigations and improvement in what concerns SAR and InSAR remote sensing. Due to their weather and daylight-independency, SAR sensors allow an all-time observation of the earth. This is determining in cases where rapid change detection is required after a natural - or technological - disaster. Due to the high resolution that can be achieved, the new generation of space-borne radar sensors opens up new perspectives for analysing buildings in urban areas. Moreover, due to their short revisiting cycle, they give rise to monitoring and change detection applications. In this paper, we present a concept for change detection in urban area at building level, relying only on SAR- and InSAR data. In this approach, interferometric and radargrammetric SAR data are merged in order to detect changes. Here, we present the overall workflow, the test area, the required data as well as first findings on the best-suited stereo-configurations for change detection
Temporal dynamics of hydrological threshold events
International audienceThe episodic nature of hydrological flows such as surface runoff and preferential flow is a result of the nonlinearity of their triggering and the intermittency of rainfall. In this paper we examine the temporal dynamics of threshold processes that are triggered by either an infiltration excess (IE) mechanism when rainfall intensity exceeds a specified threshold value, or a saturation excess (SE) mechanism governed by a storage threshold. We analytically derive probabilistic measures of the time between successive events in each case, and in the case of the SE triggering, we relate the statistics of the time between events to the statistics of storage and the underlying water balance. In the case of the IE mechanism, the temporal dynamics of flow events is shown to be simply scaled statistics of rainfall timing. In the case of the SE mechanism the time between events becomes structured. With increasing climate aridity the mean and the variance of the time between SE events increases but temporal clustering, as measured by the coefficient of variation (CV) of the inter-event time, reaches a maximum in deep stores when the climatic aridity index equals 1. In very humid and also very arid climates, the temporal clustering disappears, and the pattern of triggering is similar to that seen for the IE mechanism. In addition we show that the mean and variance of the magnitude of SE events decreases but the CV increases with increasing aridity. The CV of inter-event times is found to be approximately equal to the CV of the magnitude of SE events per storm only in very humid climates with the CV of event magnitude tending to be much larger than the CV of inter-event times in arid climates. In comparison to storage the maximum temporal clustering was found to be associated with a maximum in the variance of soil moisture. The CV of the time till the first saturation excess event was found to be greatest when the initial storage was at the threshold
KLUM: An urban VNIR and SWIR spectral library consisting of building materials
Knowledge about the existing materials in urban areas has, in recent times, increased in importance. With the use of imaging spectroscopy and hyperspectral remote sensing techniques, it is possible to measure and collect the spectra of urban materials. Most spectral libraries consist of either spectra acquired indoors in a controlled lab environment or of spectra from afar using airborne systems accompanied with in situ measurements. Furthermore, most publicly available spectral libraries have, so far, not focused on facade materials but on roofing materials, roads, and pavements. In this study, we present an urban spectral library consisting of collected in situ material spectra with imaging spectroscopy techniques in the visible and near-infrared (VNIR) and short-wave infrared (SWIR) spectral range, with particular focus on facade materials and material variation. The spectral library consists of building materials, such as facade and roofing materials, in addition to surrounding ground material, but with a focus on facades. This novelty is beneficial to the community as there is a shift to oblique-viewed Unmanned Aerial Vehicle (UAV)-based remote sensing and thus, there is a need for new types of spectral libraries. The post-processing consists partly of an intra-set solar irradiance correction and recalculation of reference spectra caused by signal clipping. Furthermore, the clustering of the acquired spectra was performed and evaluated using spectral measures, including Spectral Angle and a modified Spectral Gradient Angle. To confirm and compare the material classes, we used samples from publicly available spectral libraries. The final material classification scheme is based on a hierarchy with subclasses, which enables a spectral library with a larger material variation and offers the possibility to perform a more refined material analysis. The analysis reveals that the color and the surface structure, texture or coating of a material plays a significantly larger role than what has been presented so far. The samples and their corresponding detailed metadata can be found in the Karlsruhe Library of Urban Materials (KLUM) archiv
- …