580 research outputs found
Preferential antiferromagnetic coupling of vacancies in graphene on SiO_2: Electron spin resonance and scanning tunneling spectroscopy
Monolayer graphene grown by chemical vapor deposition and transferred to
SiO_2 is used to introduce vacancies by Ar^+ ion bombardment at a kinetic
energy of 50 eV. The density of defects visible in scanning tunneling
microscopy (STM) is considerably lower than the ion fluence implying that most
of the defects are single vacancies. The vacancies are characterized by
scanning tunneling spectroscopy (STS) on graphene and HOPG exhibiting a peak
close to the Fermi level. The peak persists after air exposure up to 180 min,
albeit getting broader. After air exposure for less than 60 min, electron spin
resonance (ESR) at 9.6 GHz is performed. For an ion flux of 10/nm^2, we find a
signal corresponding to a g-factor of 2.001-2.003 and a spin density of 1-2
spins/nm^2. The ESR signal consists of a mixture of a Gaussian and a Lorentzian
of equal weight exhibiting a width down to 0.17 mT, which, however, depends on
details of the sample preparation. The g-factor anisotropy is about 0.02%.
Temperature dependent measurements reveal antiferromagnetic correlations with a
Curie-Weiss temperature of -10 K. Albeit the electrical conductivity of
graphene is significantly reduced by ion bombardment, the spin resonance
induced change in conductivity is below 10^{-5}.Comment: 10 pages, 5 figures, discussion on STM images in the literature of
defects in graphene adde
Ambient Green and Creativity
This research examined an important applied question: whether viewing ambient green (relative to red) on the wall of a workspace would facilitate creativity. A methodologically sound experiment revealed no influence of green on creativity. Care must be taken when interpreting a null result, but these data do not provide support for the presence of a relation between ambient green and creativity. This research also highlights the need for more research in the area of ambient color and psychological functioning, and the need for caution regarding the tendency to move to real-world recommendations before a firm empirical base is established
Resistivity and Hall effect of LiFeAs: Evidence for electron-electron scattering
LiFeAs is unique among the broad family of FeAs-based superconductors,
because it is superconducting with a rather large K under
ambient conditions although it is a stoichiometric compound. We studied the
electrical transport on a high-quality single crystal. The resistivity shows
quadratic temperature dependence at low temperature giving evidence for strong
electron-electron scattering and a tendency towards saturation around room
temperature. The Hall constant is negative and changes with temperature, what
most probably arises from a van Hove singularity close to the Fermi energy in
one of the hole-like bands. Using band structure calculations based on angular
resolved photoemission spectra we are able to reproduce all the basic features
of both the resistivity as well as the Hall effect data.Comment: 6 pages, 3 figures included; V2 has been considerably revised and
contain a more detailed analysis of the Hall effect dat
Disorder-induced Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr_{0.9}Ca_{0.1}CuO_2
We report a comparative study of 63Cu Nuclear Magnetic Resonance spin lattice
relaxation rates, T_1^{-1}, on undoped SrCuO_2 and Ca doped
Sr_{0.9}Ca_{0.1}CuO_2 spin chain compounds. A temperature independent T_1^{-1}
is observed for SrCuO_2 as expected for an S=1/2 Heisenberg chain.
Surprisingly, we observe an exponential decrease of T_1^{-1} for T < 90,K in
the Ca-doped sample evidencing the opening of a spin gap. The data analysis
within the J_1-J_2 Heisenberg model employing density-matrix renormalization
group calculations suggests an impurity driven small alternation of the
J_2-exchange coupling as a possible cause of the spin gap.Comment: 4 pages, 4 figure
Specific heat of CaNaFeAs single crystals: unconventional s multi-band superconductivity with intermediate repulsive interband coupling and sizable attractive intraband couplings
We report a low-temperature specific heat study of high-quality single
crystals of the heavily hole doped superconductor
CaNaFeAs. This compound exhibits bulk
superconductivity with a transition temperature \,K, which is
evident from the magnetization, transport, and specific heat measurements. The
zero field data manifests a significant electronic specific heat in the normal
state with a Sommerfeld coefficient mJ/mol K. Using a
multi-band Eliashberg analysis, we demonstrate that the dependence of the zero
field specific heat in the superconducting state is well described by a
three-band model with an unconventional s pairing symmetry and gap
magnitudes of approximately 2.35, 7.48, and -7.50 meV. Our analysis
indicates a non-negligible attractive intraband coupling,which contributes
significantly to the relatively high value of . The Fermi surface averaged
repulsive and attractive coupling strengths are of comparable size and outside
the strong coupling limit frequently adopted for describing high- iron
pnictide superconductors. We further infer a total mass renormalization of the
order of five, including the effects of correlations and electron-boson
interactions.Comment: 8 Figures, Submitted to PR
Crystal and magnetic structure of the oxypnictide superconductor LaO(1-x)FxFeAs: evidence for magnetoelastic coupling
High-resolution and high-flux neutron as well as X-ray powder-diffraction
experiments were performed on the oxypnictide series LaO(1-x)FxFeAs with
0<x<0.15 in order to study the crystal and magnetic structure. The magnetic
symmetry of the undoped compound corresponds to those reported for ReOFeAs
(with Re a rare earth) and for AFe2As2 (A=Ba, Sr) materials. We find an ordered
magnetic moment of 0.63(1)muB at 2 K in LaOFeAs, which is significantly larger
than the values previously reported for this compound. A sizable ordered
magnetic moment is observed up to a F-doping of 4.5% whereas there is no
magnetic order for a sample with a F concentration of x=0.06. In the undoped
sample, several interatomic distances and FeAs4 tetrahedra angles exhibit
pronounced anomalies connected with the broad structural transition and with
the onset of magnetism supporting the idea of strong magneto-elastic coupling
in this material.Comment: 8 pages, 7 figures, regular articl
Photoemission induced gating of topological insulator
The recently discovered topological insulators exhibit topologically
protected metallic surface states which are interesting from the fundamental
point of view and could be useful for various applications if an appropriate
electronic gating can be realized. Our photoemission study of Cu intercalated
Bi2Se3 shows that the surface states occupancy in this material can be tuned by
changing the photon energy and understood as a photoemission induced gating
effect. Our finding provides an effective tool to investigate the new physics
coming from the topological surface states and suggests the intercalation as a
recipe for synthesis of the material suitable for electronic applications.Comment: + resistivity data and some discussio
Anomalously enhanced photoemission from the Dirac point and symmetry of the self-energy variations for the surface states in Bi2Se3
Accurate analysis of the photoemission intensity from the surface states of
Bi2Se3 reveals two unusual features: spectral line asymmetry and anomalously
enhanced photoemission from the Dirac point. The former indicates a certain
symmetry of a scattering process, which results in strongly k\omega-dependent
contribution to the imaginary part of the self-energy that changes sign while
crossing both the dispersion curves and the energy of the Dirac point. The
latter is hard to describe by one particle spectral function while a final
state interference seems to be plausible explanation
- …