401,700 research outputs found

    Explicit memory schemes for evolutionary algorithms in dynamic environments

    Get PDF
    Copyright @ 2007 Springer-VerlagProblem optimization in dynamic environments has atrracted a growing interest from the evolutionary computation community in reccent years due to its importance in real world optimization problems. Several approaches have been developed to enhance the performance of evolutionary algorithms for dynamic optimization problems, of which the memory scheme is a major one. This chapter investigates the application of explicit memory schemes for evolutionary algorithms in dynamic environments. Two kinds of explicit memory schemes: direct memory and associative memory, are studied within two classes of evolutionary algorithms: genetic algorithms and univariate marginal distribution algorithms for dynamic optimization problems. Based on a series of systematically constructed dynamic test environments, experiments are carried out to investigate these explicit memory schemes and the performance of direct and associative memory schemes are campared and analysed. The experimental results show the efficiency of the memory schemes for evolutionary algorithms in dynamic environments, especially when the environment changes cyclically. The experimental results also indicate that the effect of the memory schemes depends not only on the dynamic problems and dynamic environments but also on the evolutionary algorithm used

    PDGA: The primal-dual genetic algorithm

    Get PDF
    Copyright @ 2003 IOS PressGenetic algorithms (GAs) are a class of search algorithms based on principles of natural evolution. Hence, incorporating mechanisms used in nature may improve the performance of GAs. In this paper inspired by the mechanisms of complementarity and dominance that broadly exist in nature, we present a new genetic algorithm — Primal-Dual Genetic Algorithm (PDGA). PDGA operates on a pair of chromosomes that are primal-dual to each other through the primal-dual mapping, which maps one to the other with a maximum distance away in a given distance space in genotype. The primal-dual mapping improves the exploration capacity of PDGA and thus its searching efficiency in the search space. To test the performance of PDGA, experiments were carried out to compare PDGA over traditional simple GA (SGA) and a peer GA, called Dual Genetic Algorithm (DGA), over a typical set of test problems. The experimental results demonstrate that PDGA outperforms both SGA and DGA on the test set. The results show that PDGA is a good candidate genetic algorithm

    Population-based incremental learning with memory scheme for changing environments

    Get PDF
    Copyright @ 2005 ACMIn recent years there has been a growing interest in studying evolutionary algorithms for dynamic optimization problems due to its importance in real world applications. Several approaches have been developed, such as the memory scheme. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of evolutionary algorithms, for dynamic optimization problems. A PBIL-specific memory scheme is proposed to improve its adaptability in dynamic environments. In this memory scheme the working probability vector is stored together with the best sample it creates in the memory and is used to reactivate old environments when change occurs. Experimental study based on a series of dynamic environments shows the efficiency of the memory scheme for PBILs in dynamic environments. In this paper, the relationship between the memory scheme and the multipopulation scheme for PBILs in dynamic environments is also investigated. The experimental results indicate a negative interaction of the multi-population scheme on the memory scheme for PBILs in the dynamic test environments

    Memory-based immigrants for genetic algorithms in dynamic environments

    Get PDF
    Copyright @ 2005 ACMInvestigating and enhancing the performance of genetic algorithms in dynamic environments have attracted a growing interest from the community of genetic algorithms in recent years. This trend reflects the fact that many real world problems are actually dynamic, which poses serious challenge to traditional genetic algorithms. Several approaches have been developed into genetic algorithms for dynamic optimization problems. Among these approches, random immigrants and memory schemes have shown to be beneficial in many dynamic problems. This paper proposes a hybrid memory and random immigrants scheme for genetic algorithms in dynamic environments. In the hybrid scheme, the best solution in memory is retrieved and acts as the base to create random immigrants to replace the worst individuals in the population. In this way, not only can diversity be maintained but it is done more efficiently to adapt the genetic algorithm to the changing environment. The experimental results based on a series of systematically constructed dynamic problems show that the proposed memory based immigrants scheme efficiently improves the performance of genetic algorithms in dynamic environments

    A comparative study of immune system based genetic algorithms in dynamic environments

    Get PDF
    Copyright @ 2006 ACMDiversity and memory are two major mechanisms used in biology to keep the adaptability of organisms in the ever-changing environment in nature. These mechanisms can be integrated into genetic algorithms to enhance their performance for problem optimization in dynamic environments. This paper investigates several GAs inspired by the ideas of biological immune system and transformation schemes for dynamic optimization problems. An aligned transformation operator is proposed and combined to the immune system based genetic algorithm to deal with dynamic environments. Using a series of systematically constructed dynamic test problems, experiments are carried out to compare several immune system based genetic algorithms, including the proposed one, and two standard genetic algorithms enhanced with memory and random immigrants respectively. The experimental results validate the efficiency of the proposed aligned transformation and corresponding immune system based genetic algorithm in dynamic environments

    Lie algebra cohomology and group structure of gauge theories

    Get PDF
    We explicitly construct the adjoint operator of coboundary operator and obtain the Hodge decomposition theorem and the Poincar\'e duality for the Lie algebra cohomology of the infinite-dimensional gauge transformation group. We show that the adjoint of the coboundary operator can be identified with the BRST adjoint generator QQ^{\dagger} for the Lie algebra cohomology induced by BRST generator QQ. We also point out an interesting duality relation - Poincar\'e duality - with respect to gauge anomalies and Wess-Zumino-Witten topological terms. We consider the consistent embedding of the BRST adjoint generator QQ^{\dagger} into the relativistic phase space and identify the noncovariant symmetry recently discovered in QED with the BRST adjoint N\"other charge QQ^{\dagger}.Comment: 24 pages, RevTex, Revised version submitted to J. Math. Phy

    Statistics-based adaptive non-uniform crossover for genetic algorithms

    Get PDF
    Copyright @ 2002 University of BirminghamThrough the population, genetic algorithm (GA) implicitly maintains the statistics about the search space. This implicit statistics can be used explicitly to enhance GA's performance. Inspired by this idea, a statistics-based adaptive non-uniform crossover, called SANUX, has been proposed. SANUX uses the statistics information of the alleles in each locus to adaptively calculate the swapping probability of that locus for crossover. A simple triangular function has been used to calculate the swapping probability. In this paper two different functions, the trapezoid and exponential functions, are investigated for SANUX insteadd of the triangular function. The experiment results show that both functions further improve the performance of SANUX across a typical set of GA's test problems

    Multi-population genetic algorithms with immigrants scheme for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2010.The static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile ad hoc network (MANET), wireless mesh network, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, that is, the network topology changes over time due to energy conservation or node mobility. Therefore, the SP problem turns out to be a dynamic optimization problem in mobile wireless networks. In this paper, we propose to use multi-population GAs with immigrants scheme to solve the dynamic SP problem in MANETs which is the representative of new generation wireless networks. The experimental results show that the proposed GAs can quickly adapt to the environmental changes (i.e., the network topology change) and produce good solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council(EPSRC) of UK under Grant EP/E060722/1

    Comment on "Fock-Darwin States of Dirac Electrons in Graphene-Based Artificial Atoms"

    Full text link
    Chen, Apalkov, and Chakraborty (Phys. Rev. Lett. 98, 186803 (2007)) have computed Fock-Darwin levels of a graphene dot by including only basis states with energies larger than or equal to zero. We show that their results violate the Hellman-Feynman theorem. A correct treatment must include both positive and negative energy basis states. Additional basis states lead to new energy levels in the optical spectrum and anticrossings between optical transition lines.Comment: 1 page, 1 figure, accepted for publication in PR
    corecore