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ABSTRACT
Diversity and memory are two major mechanisms used in
biology to keep the adaptability of organisms in the ever-
changing environment in nature. These mechanisms can be
integrated into genetic algorithms to enhance their perfor-
mance for problem optimization in dynamic environments.
This paper investigates several GAs inspired by the ideas of
biological immune system and transformation schemes for
dynamic optimization problems. An aligned transformation
operator is proposed and combined to the immune system
based genetic algorithm to deal with dynamic environments.
Using a series of systematically constructed dynamic test
problems, experiments are carried out to compare several
immune system based genetic algorithms, including the pro-
posed one, and two standard genetic algorithms enhanced
with memory and random immigrants respectively. The ex-
perimental results validate the efficiency of the proposed
aligned transformation and corresponding immune system
based genetic algorithm in dynamic environments.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Immune system based genetic algorithms, transformation,
memory, random immigrants, dynamic environments

1. INTRODUCTION
Optimization in dynamic environments has emerged into

a rapidly growing subject of research for the community of
genetic algorithms (GAs) due to the practical relevance [2].
In the real world, many problems are actually dynamic op-
timization problems (DOPs), where the optimization crite-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

ria, design variables, and environmental conditions may all
change over time due to many factors, e.g., machine break-
down, stochastic orders from customers, and financial con-
ditions. Traditional GAs, when applied for DOPs, face a big
problem: the convergence problem. Though convergence at
proper pace and precision toward the optimum is what we
expect from GAs for stationary optimization problems, it
becomes a significant limitation for traditional GAs in dy-
namic environments. This is because once converged, GAs
are unable to response effectively to changes in the dynamic
environment and track the moving optimum with time.

In order to address the convergence problem, i.e., to avoid
all individuals in the population converging toward the op-
timum of a problem, researchers have developed quite a lot
diversity approaches into GAs to enhance their performance,
such as the random immigrants [6], memory-based immi-
grants [15], and hypermutation schemes [3, 9] (just to list
a few). Besides diversity schemes, another major approach
developed for GAs for DOPs is the incorporation of mem-
ory mechanisms, where useful information from the current
environment is stored and reused when similar environment
is observed later [1, 8, 13]. In fact, diversity and memory
are two major mechanisms used in biology to adapt organ-
isms in the ever-changing environment in nature. For ex-
ample, in biology the immune system protects animal body
against potentially harmful pathogens. The immune system
can produce diverse antigen receptors that reside on the sur-
face of immune cells to detect infinitely diverse pathogens
and can retain a memory of the pathogens to speed up re-
sponse when the pathogens invade the body again.

The mechanisms of the immune system have been applied
into GAs to deal with dynamic environments. Relevant work
can be found in [4, 5]. In [11], Simões and Costa proposed an
immune system based genetic algorithm (ISGA) for dynamic
environments. ISGA integrates the two main mechanisms of
diversity and memory used in the natural immune system
into GAs. In the ISGA, a biologically inspired genetic oper-
ator called transformation is used to create new individuals
[10]. Transformation simulates the somatic hypermutation
while an immune cell is cloned in the immune system.

In this paper, an aligned transformation operator is pro-
posed for ISGAs to deal with dynamic environments. In the
aligned transformation, each gene segment records a start-
ing position when it is stored in the gene pool. And when
transformation happens involving such a gene segment, it
is transformed into an individual at the exact position in-
dicated by its record. In Simões and Costa’s ISGA, each
individual in the memory is associated with the average fit-
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ness of the population when it was stored. This value is
used as the affinity measure to retrieve memory individu-
als to clone new individuals into the population when an
environmental change is detected. In this paper, we utilize
the re-evaluated fitness value of memory individuals as the
measure to retrieve the best memory individual for cloning.
Using the DOP generator proposed in [14, 16, 17], a series of
DOPs are constructed as the test environments and experi-
ments are carried out to compare the performance of several
variants of ISGAs, including the one proposed in this paper,
and two standard GAs enhanced with memory and random
immigrants respectively. The experimental results validate
the efficiency of the proposed transformation operator and
corresponding ISGA in dynamic environments.

The rest of this paper is outlined as follows. The next
section describes the fundamentals of the biological immune
system and the ISGA proposed by Simões and Costa. Sec-
tion 3 details the ISGA with proposed aligned transforma-
tion and other GAs investigated in this paper. Section 4
presents the experimental study and relevant analysis of
comparing investigated ISGAs and two GA variants on a
series of dynamic test environments. Section 5 concludes
this paper with some discussions.

2. RELEVANT BACKGROUND

2.1 The Immune System
The immune system consists of cells, molecules, and or-

gans that act together to defend the body against foreign
invaders that may cause disease, such as bacteria, viruses,
and fungi. The health of the body depends on the immune
system’s ability to recognize and eliminate foreign invaders
called antigens [7]. The human body maintains a large num-
ber of immune cells. Some belong to the innate immune
system, e.g., the macrophages that function by surround-
ing, ingesting, and destroying antigens. Those immune cells
that belong to the acquired or adaptive immune system are
called lymphocytes, which circulate through the body. There
are two types of lymphocytes, namely T-cells and B-cells,
which cooperate in the immune response with different roles.
The T-cells can be separated into helper T-cells, which build
up the immune response together with B-cells, and killer T-
cells, which eliminate the antigens detected by the immune
system. B-cells can produce and secret antibodies as a re-
sponse to exogenous organisms.

When an antigen invades the body for the first time, a
few B-cells can recognize the invader’s peptides and will
be activated to proliferate and produce a specific antibody,
which can recognize and bind to the antigen. This process
is called primary response, which is a slow process and is de-
scribed as follows. When a B-cell is activated, it migrates to
a lymph node, where it proliferates producing many short-
lived clones through cell division. B-cell cloning is subject
to a form of mutation termed somatic hypermutation. This
increases the chance that the clones have different affinities
from the parent to the antigen. The mutated B-cell clones
will undergo a differentiation process. Those clones that
have low affinity to the antigen will die while those with
high affinity will survive and differentiate into plasma or
memory B-cells. Plasma B-cells secrete antibodies that can
bind to the antigen, destroying or neutralizing it.

Memory B-cells will retain in the circulation and con-
stitute the “memory” of the immune system: if the same

pathogens attack the body again in the future, the adapted
memory B-cells can provide a second response that is much
faster and more efficient than the primary response. In this
sense, the immune system is said to learn to recognize spe-
cific kinds of antigens in the primary response and memorize
the learned result via the memory B-cells.

The immune system can recognize a large number of patho-
gens. This is because it has a gene library that aggregates
modular chunks of genes or gene segments. These gene seg-
ments can be recombined to build up diverse antibodies.

2.2 Simões and Costa’s ISGA
The mechanisms of diversity and memory in the biologi-

cal immune system can be integrated into GAs to enhance
their performance in dynamic environments. In [11], Simões
and Costa proposed an immune system based genetic algo-
rithm for dynamic environments. The ideas of gene libraries,
clonal selection with somatic hypermutation and memory B-
cells were translated and integrated into the standard GA
to deal with dynamic environments. The starting point is
to view the environment as the antigen and the changes in
the environment as the appearance of different antigens.

In their ISGA, there are two populations of individuals.
The first one consists of plasma B-cells individuals that
evolve as follows: the individuals with the best match to
the optimum (antigen) are selected and cloned. During the
cloning phase every individual has a chance of being modi-
fied by a mechanism similar to the somatic hypermutation of
B-cells. A transformation genetic operator, which was bio-
logically inspired and proposed by them in [10], is used here
to create new individuals during the cloning process. The
second population is a collection of memory B-cells individ-
uals, which were the best ones at different moments in the
past when they belong to the first population. Each indi-
vidual of the second population has an attached value which
corresponds to the average fitness of the first population in
some particular situation, when that individual had good
performance and was stored in the second population. This
attached value will be used as the affinity measurement to
match memory B-cells to a different environment (antigen).

The ISGA uses an environmental change detection mech-
anism by observing the degradation of population average
fitness. When a change is detected, there may exist one in-
dividual in the second population that has proximity with
the new environment. The proximity is measured by the
average fitness of the first population of plasma B-cells and
the value attached to the memory B-cells. The most suitable
memory B-cells is then activated, cloned and reintroduced
into the plasma B-cells population, replacing the worst ones.

The ISGA uses a set of gene libraries, each containing a
set of gene segments of fixed size. The libraries are ran-
domly initialized and then kept constant during the entire
evolutionary process. They are used in the transformation
process, as described in the next subsection.

2.3 The Transformation Operator
In nature, some bacteria can absorb small pieces of DNA

or gene segments from the surrounding environment and re-
integrate them into its own genetic material. These bacteria
are called competent and the re-integration of gene segments
may give them evolutionary advantages. In [10], Simões and
Costa proposed a transformation operator to simulate the
somatic hypermutation while an immune cell is cloned in
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the immune system. The transformation operator was used
as the main genetic operator in the GA instead of crossover
and has shown to outperform traditional crossover operators
for GAs for some stationary problems in [10]. The transfor-
mation process is described as follows.

The ISGA starts from an intital population of individuals
(plasma B-cells) and an initial pool of gene libraries, both
randomly created. Every generation individuals are selected
to form the mating pool. Each individual in the mating pool
will be transformed with a transformation probability pt. If
an individual is subject to transformation, it is transformed
as follows. First, one gene segment is randomly selected from
one random gene library. Then, a transformation locus is
randomly chosen in the individual. Finally, the selected gene
segment is incorporated in the genome of the individual,
replacing the genes after the transformation locus.

3. GENETIC ALGORITHMS STUDIED

3.1 ISGA with Aligned Transformation
In Simões and Costa’s transformation process, a selected

gene segment is transferred into an individual at a random
locus. This transformation has an effect of implanting a leg
to replace an arm of a body. This leg-to-arm transformation
may be beneficial due to the diversity introduced. A legged
arm may be what is exactly required by the environment. In
order to test whether an arm-to-arm transformation is bet-
ter than the leg-to-arm transformation, this paper proposes
an aligned transformation operator for ISGAs to deal with
dynamic environments. The corresponding ISGA is called
ISGA with aligned transformation, denoted ISGAa in this
paper. The pseudo-code of ISGAa as well as other ISGAs
studied in this paper is shown in Figure 11.

In ISGAa, the gene pool consists of a set of N gene seg-
ments, each with a fixed length L. Each gene segment con-
sists of a trinary record <random, locus, string>. The
first element random represents whether the gene segment
is a random one or not, which will be further explained be-
low. The second element locus records the starting locus
when the gene segment is stored in the gene pool. The third
elements string represent the real bitstring of the gene seg-
ment respectively. The N gene segments are grouped into
two groups: one random group that consists of pr ∗ N ran-
dom gene segments and one non-random group that includes
pn∗N gene segments that are retrieved from the population.

The gene pool is randomly initialized and is updated every
generation as follows. All the gene segments in the random
group are replaced by new random ones while a part of gene
segments in the non-random group, say pu ∗ N (pu ≤ pn)
gene segments, are updated according to the current pop-
ulation. The updating is implemented as follows. First,
a gene segment is randomly selected from the non-random
group to be updated. Then, an individual from the popula-
tion is selected using a standard tournament selection with
a tournament size of 2. Finally, the selected gene segment
is replaced with a random segment of length L from the se-
lected individual and the starting locus is recorded as the
new locus of the gene segment.

Each time an individual, be it a plasma B-cell or memory

1In Simões and Costa’s original ISGA [10], mutation is not
used. In this paper, mutation is switched on since it proves
beneficial according to our preliminary experiments.

t := 0
initialize population P (0) randomly
initialize gene pool G(0) and memory M(0) randomly
evaluate population P (0) and memory M(0)
repeat

P ′(t) := selectForReproduction(P (t))
clone(P ′(t), G(t), pt) // pt is the transformation prob.
mutate(P ′(t), pm) // pm is the mutation prob.
evaluate the interim population P ′(t)
evaluate memory M(t)

if environmental change detected then
retrieve the best memory point BM (t)
clone rc ∗ n new individuals from BM (t)
replace the worst individuals in P ′(t) by the clones

if time to update memory then
update memory M(t)

if not a constant gene pool then
update gene pool G(t) // for ISGAd and ISGAa

P (t + 1) := P ′(t)
until terminated = true // e.g., t > tmax

Figure 1: Pseudo-code of investigated ISGAs.

B-cell, is cloned, it undergoes transformation with a proba-
bility pt as below. First, a gene segment is randomly selected
from the gene pool. Then, we check whether it is from the
random group or non-random group. If the gene segment is
from the non-random group, it is transformed into the indi-
vidual under consideration from the exact locus indicated by
the variable locus in its record, i.e., aligned transformation.
Otherwise, for a random group gene segment, the starting
locus is depressed in the transformation process and it is
transformed just as in Simões and Costa’s transformation
process. That is, the gene segment will be transformed into
the recipient individual from a random locus.

ISGAa (and other GAs with memory studied in this pa-
per) uses a memory of size m = 0.1 ∗ n where n is the size
of the total population, including the plasma B-cells and
memory B-cells. The memory is randomly initialized and
evaluated every generation. The environment is detected as
changed if at least one individual in the memory has been de-
tected having changed its fitness. If an environment change
is detected, the best memory point is retrieved and cloned
to create rc ∗ n (rc is called the clone ratio) individuals to
replace the worst ones in the population. The memory is up-
dated in a stochastic time pattern: suppose that a memory
updating happens at generation t, then the next memory
updating time is tM = t+rand(5, 10). When the memory is
due to update, if any of the randomly initialized points still
exists in the memory, the best individual of the population
will replace one of them randomly; otherwise, it will replace
the closest memory point measured by Hamming distance if
it is better than the closest memory point.

3.2 Other GAs Investigated
In addition to ISGAa, two other ISGA variants, denoted

ISGAc and ISGAd respectively, are also investigated in this
paper. ISGAc is similar to Simões and Costa’s original
ISGA: the gene pool is randomly initialized and then kept
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constant during the run of ISGAc, and the average popu-
lation fitness is attached with memory B-cells and used as
affinity measure to retrieve memory point for cloning. One
different thing is that ISGAc uses the classical mutation
while Simões and Costa’s ISGA does not.

ISGAd is similar to ISGAa but Simões and Costa’s trans-
formation is used instead of the proposed aligned transfor-
mation in the cloning process. The memory updating and
retrieving mechanisms in ISGAd are the same as in ISGAa.
As in ISGAa, the gene pool in ISGAd is dynamic, i.e., up-
dated every generation. However, the difference lies in that
in ISGAd all gene segments in the non-random group are
updated according to the current population.

In order to verify the effect of using memory for ISGAs, we
also study a variant of Simões and Costa’s Transformation
Based GA [12], denoted TBGA2. TBGA is similar to ISGAd
except that no memory is used.

Two standard GAs, the memory-enhanced GA (denoted
MEGA) [1] and random immigrants GA (denoted RIGA)
[6], are also investigated as peer GAs in this paper. For
MEGA, the memory updating scheme is the same as in IS-
GAa. The memory is also evaluated every generation. When
a change is detected, the memory is merged with the current
population and the best individuals are selected as the new
population while the memory remains unchanged. In RIGA,
every generation ri∗n random individuals are generated and
replace the worst members in the current population, where
ri is the immigrants ratio.

4. EXPERIMENTAL STUDY

4.1 Dynamic Test Environments
The DOP generator proposed in [14, 16] can construct

random dynamic environments from any binary-encoded sta-
tionary function f(�x) (�x ∈ {0, 1}l) by a bitwise exclusive-or
(XOR) operator. We suppose the environment changes ev-
ery τ generations. For each environment k, an XOR mask
�M(k) is incrementally generated as follows:

�M(k) = �M(k − 1) ⊕ �T (k), (1)

where “⊕” is the XOR operator and �T (k) is an intermedi-
ate binary template randomly created with ρ × l ones for
environment k. For the first environment k = 1, �M(1) = �0.

An individual at generation t is evaluated as follows:

f(�x, t) = f(�x ⊕ �M(k)), (2)

where k = �t/τ� is the environment index at time t. With
this XOR generator, parameters τ and ρ control the speed
and severity of environmental changes respectively. Smaller
τ means faster changes while bigger ρ means severer changes.

The above generator has been extended to construct cyclic
dynamic environments [17] as follows. First, 2K XOR masks
�M(0), · · · , �M(2K − 1) are constructed as the base states
in the search space randomly. Then, the environment can
change among these base states cyclically. Suppose the en-
vironment changes every τ generations, the individuals at
generation t is evaluated as follows:

f(�x, t) = f(�x ⊕ �M(It)) = f(�x ⊕ �M(k%(2K))), (3)
2In Simões and Costa’s TBGA, how the gene pool is up-
dated according to the current population was not stated.
In this study, tournament selection of size 2 is used to select
individuals from the population to update the gene pool.
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Figure 2: Building block of the stationary functions.

where k = �t/τ	 is the index of current environment and
It = k%(2K) is the index of the base state the environment
is in at generation t, calculated by a 2K modulo division.

The 2K XOR masks can be generated as follows. First,
we construct K binary templates �T (0), · · · , �T (K − 1) that
form a partition of the search space with each containing
randomly but exclusively selected ρ × l = l/K bits of ones.

Let �M(0) = �0 denote the initial state, the other XOR masks
are generated iteratively as:

�M(i + 1) = �M(i) ⊕ �T (i%K), i = 0, · · · , 2K − 1 (4)

The templates �T (0), · · · , �T (K − 1) are first used to create

K masks till �M(K) = �1 and then orderly reused to con-

struct another K XOR masks till �M(2K) = �M(0) = �0. The
Hamming distance between two neighbour XOR masks is
the same and equals ρ× l. Here, ρ ∈ [1/l, 1.0] is the distance
factor, determining the number of base states.

Two 100-bit binary functions, called plateau and decep-
tive, are selected as base stationary functions to construct
dynamic test environments for this study. Both functions
consist of 25 contiguous 4-bit building blocks (BBs) and have
an optimum fitness of 100. Each BB is defined based on its
unition function, i.e., the number of ones inside the BB, as
shown in Figure 2. The BB for plateau contributes 4 (or 2)
to the total fitness if its unitation is 4 (or 3), otherwise, it
contributes 0. The BB for deceptive is fully deceptive.

Two kinds of dynamic environments, random and cyclic,
are constructed from each of the two base functions using the
DOP generator mentioned above. For each DOP, the envi-
ronment is periodically changed every τ generations during
the run of a GA. The parameters τ is set to 10, 25 and 50
and ρ is set to 0.1, 0.2, 0.5, and 1.0 respectively.

Totally, a series of 24 DOPs, three τ ’s times four ρ’s under
two kinds of dynamic environments, are constructed from
each stationary function.

4.2 Experimental Design
For all GAs, parameters are set as follows: generational,

uniform crossover with the crossover probability pc = 0.6,
bit flip mutation with probability pm = 0.01, fitness propor-
tional selection, and elitism of size 1. The population size n,
including the memory if memory is used, is set to 100 and
the memory size is m = 0.1 ∗ n = 10 if used. For all ISGAs
and TBGA, the transformation probability pt is set to 0.7
and the gene pool has N = 200 gene segments of fixed length
L = 5. For ISGAd, ISGAa and TBGA, 60 gene segments
form the random group while other gene segments belong
to the non-random group, i.e., pr = 0.3 and pn = 0.7. For
ISGAa, ISGAd and TBGA, the number of gene segments in
the non-random group that are updated every generation by
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Figure 3: Experimental results of GAs on cyclic DOPs.

the current population are set to 40, 140, and 140 respec-
tively, i.e., pu = 0.2, 0.7, 0.7 respectively. For all ISGAs, the
clone ratio rc is set to 0.2 in order to compare with RIGA
where the immigrants ratio ri is also set to 0.2.

For each experiment of a GA on a DOP, 50 indepen-
dent runs were executed with the same set of random seeds.
For each run, 50 environmental changes were allowed and
the best-of-generation fitness was recorded every generation.
The overall performance of a GA on a DOP is defined as:

FBOG =
1

G

GX

i=1

(
1

N

NX

j=1

FBOGij ), (5)

where G = 50∗τ is the total generations for a run, N = 50 is
the total runs, and FBOGij is the best-of-generation fitness

of generation i of run j. The off-line performance F BOG

is the best-of-generation fitness averaged over 50 runs and
then averaged over the data gathering period.

4.3 Experimental Results and Analysis
The experimental results of comparing GAs on the con-

structed cyclic and random DOPs are plotted in Figure 3
and 4 respectively. The statistical results of comparing GAs
by one-tailed t-test with 98 degrees of freedom at a 0.05 level
of significance are given in Table 1. In Table 1, the t-test
result as to Alg. 1−Alg. 2 is shown as “+”, “−”, “++”, or
“−−” when Alg. 1 is better than, worse than, significantly
better than, or significantly worse than Alg. 2 respectively.

In order to better understand the performance of investi-
gated GAs in dynamic environments, the dynamic behaviour
of GAs with respect to best-of-generation fitness against
generations on the DOPs with τ = 25 and ρ = 0.1 and
ρ = 1.0 is plotted in Figure 5. In Figure 5, the first 20 envi-
ronmental changes (i.e., the first 500 generations) are shown
and the data were averaged over 50 runs. From the tables
and figures several results can be observed.

First, both ISGAa and ISGAd significantly outperform
TBGA on almost all DOPs, the t-test results not shown.
This result validates the benefit of combing memory scheme
into ISGAs. The advantage is much more obvious in cyclic
environments, see Figure 3.

Second, both ISGAa and ISGAd significantly outperform
ISGAc on almost all DOPs, see the t-test results regarding
ISGAa − ISGAc and ISGAd − ISGAc in Table 1. This
result happens due to two factors: the affinity measure to
retrieve the memory for clones when change occurs and the
updating of gene pool. The affinity measurement by the
average population fitness used in ISGAc can not guaran-
tee to select good memory B-cell to create clones into the
population. The effect can be observed from the dynamic
behaviour of ISGAs on DOPs with ρ = 1.0 in Figure 5(e) and
5(f), where each time when change occurs, for ISGAa and
ISGAd (and MEGA), the retrieved best memory point can
quickly draw their performance back to a high level while
for ISGAc the performance drops significantly because the
affinity measurement fails to dig out the required memory
B-cell. As to the gene pool contents factor, it can be ob-
served from the comparison of ISGAc and TBGA. ISGAc
is beaten by TBGA on most DOPs, see the t-test results in
Table 1. This shows the advantage of dynamic gene pool
over constant gene pool.

Third, both ISGAa and ISGAd outperform MEGA on
most cyclic DOPs and on most random deceptive problems,
see the t-test results regarding ISGAa − MEGA in Table
1. This happens because the memory scheme in ISGAa and
ISGAd is stronger than that in MEGA. In MEGA, when
change occurs the memory is simply merged with the popu-
lation. Many memory points in fact may be quite widely dis-
tributed in the new landscape and have low fitness. On the
contrast, in ISGAa and ISGAd the best re-evaluated mem-
ory solution is retrieved to clone new individuals. Hence,
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Figure 4: Experimental results of GAs on random DOPs.

Table 1: The t-test results of comparing GAs on cyclic DOPs.
Environment Cyclic Random
t-test Result Plateau Deceptive P lateau Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
ISGAa − RIGA −− ++ ++ ++ ++ ++ ++ ++ −− −− −− ++ ++ ++ −− ++
ISGAa − MEGA −− ++ ++ ++ ++ ++ ++ ++ −− −− −− ++ ++ + −− ++
TBGA − ISGAc ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
ISGAa − ISGAc ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
ISGAd − ISGAc ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ ++
ISGAa − ISGAd −− −− −− −− ++ + −− − ++ − −− −− ++ + −− −

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
ISGAa − RIGA −− ++ ++ ++ ++ ++ ++ ++ −− −− −− ++ ++ ++ ++ ++
ISGAa − MEGA −− + ++ − ++ ++ ++ ++ −− −− −− − ++ ++ ++ ++
TBGA − ISGAc ++ ++ − ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
ISGAa − ISGAc ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
ISGAd − ISGAc ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ ++
ISGAa − ISGAd + + −− −− ++ ++ −− −− ++ ++ −− −− ++ ++ + −−

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
ISGAa − RIGA −− −− ++ ++ ++ ++ ++ ++ −− −− −− ++ ++ ++ ++ ++
ISGAa − MEGA −− −− ++ − ++ ++ ++ ++ −− −− −− − ++ ++ ++ ++
TBGA − ISGAc ++ ++ ++ + ++ ++ ++ ++ ++ ++ ++ − ++ ++ ++ ++
ISGAa − ISGAc ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
ISGAd − ISGAc ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ + ++ ++
ISGAa − ISGAd ++ + −− −− ++ ++ −− −− ++ ++ ++ −− ++ ++ ++ −−

the clones are more related to the new environment than the
memory points in MEGA are. However, on random plateau
problems the wide distribution of the memory points may
give MEGA more adaptability to the new environment. But,
on random deceptive DOPs, the potential diversity of the
memory points in MEGA seems harmful due to the prop-
erty of the deceptive function, which makes MEGA lose to
ISGAa and ISGAd. This result can be further observed in
Figure 5: on deceptive problems, ISGAa and ISGAd can
climb to a higher fitness level that MEGA can do during
each dynamic environment.

Fourth, both ISGAa and ISGAd outperform RIGA on
most cyclic DOPs and random deceptive DOPs but are
beaten by RIGA on random plateau DOPs, see the t-test

results regarding ISGAa−RIGA in Table 1. The result re-
garding cyclic DOPs is easy to understand. For cyclic DOPs
the memory scheme usually works better than random immi-
grants scheme, see Figure 5(e) and 5(f). On random plateau
DOPs, the diversity introduced by random immigrants is
beneficial which gives RIGA an advantage over ISGAa and
ISGAd, see Figure 5(c).

Finally, comparing ISGAa and ISGAd, it can be seen that
neither of them is a clear winner over the other on all tested
DOPs, see the t-test results regarding ISGAa− ISGAd. It
is interesting to see that ISGAa dominates on DOPs with
smaller ρ, e.g., 0.1 or 0.2, while ISGAd dominates on DOPs
with bigger ρ. This can be further observed by comparing
their dynamic behaviour in Figure 5(a) and 5(b) over 5(e)
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(a) Cyclic Plateau, τ = 25, ρ = 0.1
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(b) Cyclic Deceptive, τ = 25, ρ = 0.1
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(c) Random Plateau, τ = 25, ρ = 0.1
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(d) Random Deceptive, τ = 25, ρ = 0.1
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(e) Cyclic Plateau, τ = 25, ρ = 1.0
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(f) Cyclic Deceptive, τ = 25, ρ = 1.0
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Figure 5: Dynamic behaviour of GAs on DOPs with τ = 25 and ρ = 0.1 and 1.0.

and 5(f). This happens because significant environmental
changes require a higher population diversity level to follow
the moving optimum, which gives the leg-to-arm transfor-
mation an advantage. However, in slightly changing envi-
ronments, when a change occurs, a stronger arm other than
a leg is required to replace an old weakened arm. This leads
to the better performance of ISGAa than ISGAd.

4.4 Sensitivity Analysis of the Transformation
Probability on ISGAa

In order to study the effect of the transformation Proba-
bility pt on the performance of ISGAa for DOPs, we further
carried out experiments on ISGAa with different settings,
0.3, 0.5, and 0.9, for pt on the dynamic test problems. The
experimental design is the same as previous one for ISGAa
except pt. The experimental results are plotted in Figure
6 where the data were obtained and averaged over 50 runs
and the ISGAa with pt is marked as pt-ISGAa accordingly.

From Figure 6, it can be seen that pt does affect ISGAa’s
performance on some DOPs with small values of ρ and it
seems ISGAa’s performance rises with the value of pt. For
example, on cyclic plateau problem with τ = 25 and ρ = 0.1,
when pt rises from 0.3 to 0.5, the performance of ISGAa
improves from FBOG(0.5-ISGAa) = 63.2 to 64.1. When pt

is raised to 0.7, ISGAa’s performance is further improved to
64.8 and when pt = 0.9 the performance improves to 65.1.
From Figure 6, it can also be seen that pt has more sensitive
effect on ISGAa on plateau DOPs than on deceptive DOPs.

5. CONCLUSIONS
The mechanisms of immune system and transformation of

genetic materials improve organisms’ adaptability in natu-
ral dynamic environments and can be borrowed into GAs to
enhance their performance in dynamic environments. This
paper proposes an aligned transformation operator and com-
bines it to the immune system based genetic algorithm to
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Figure 6: Experimental results of ISGAa with different transformation rates on DOPs with τ = 25.

deal with dynamic environments. Based on a series of sys-
tematically constructed dynamic environments, experiments
were carried out to compare several variants of immune sys-
tem based genetic algorithms and traditional memory and
random immigrants enhanced GAs. The experimental re-
sults validate the efficiency of the proposed transformation
operator and corresponding immune system based GA in
dynamic environments. From the experimental results and
relevant analysis, several conclusions can be drawn on the
dynamic test environments.

First, using gene pool that is dynamically updated ac-
cording to the current population is better than a constant
gene pool for ISGAs in dynamic environments. Second, the
proposed aligned transformation works well for ISGAs, espe-
cially when the environmental changes are not very severe.
When the environment involves severe changes it is better
to use ISGA with Simões and Costa’s transformation opera-
tor. Third, the parameter sensitivity analysis shows that the
transformation probability pt does affect the performance of
ISGAa on some DOPs and setting pt in the range of [0.7, 0.9]
seems a good choice for ISGAa. Finally, random immigrants
improve GA’s performance on random non-deceptive DOPs
while work poorly on deceptive DOPs and on cyclic DOPs.

In this paper, some preliminary experiments were carried
out, comparing several ISGAs for DOPs. Further compar-
ing the investigated ISGAs with other approaches for GAs in
dynamic environments is now under investigation. It is also
an interesting future work to develop other advanced trans-
formation schemes for ISGAs for DOPs. We believe that de-
veloping adaptive transformation schemes that respect the
changing environment will further improve the performance
of GAs in dynamic environments.
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