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Abstract. Genetic algorithms (GAs) are a class of search algorithms based on prin-
ciples of natural evolution. Hence, incorporating mechanisms used in nature may im-
prove the performance of GAs. In this paper inspired by the mechanisms of comple-
mentarity and dominance that broadly exist in nature, we present a new genetic algo-
rithm — Primal-Dual Genetic Algorithm (PDGA). PDGA operates on a pair of chro-
mosomes that are primal-dual to each other through the primal-dual mapping, which
maps one to the other with a maximum distance away in a given distance space in
genotype. The primal-dual mapping improves the exploration capacity of PDGA and
thus its searching efficiency in the search space. To test the performance of PDGA, ex-
periments were carried out to compare PDGA over traditional simple GA (SGA) and
a peer GA, called Dual Genetic Algorithm (DGA), over a typical set of test problems.
The experimental results demonstrate that PDGA outperforms both SGA and DGA on
the test set. The results show that PDGA is a good candidate genetic algorithm.

1 Introduction

Genetic algorithms (GAs) are a class of search algorithms based on principles of natural se-
lection and population genetics. They are widely used for optimization problem solving and
machine learning. To realize their task, GAs maintain a population of individuals, usually
encoded as fixed length binary strings. Each individual is associated a fitness value accord-
ing to the problem being solved, usually called objective function. GAs iteratively generate
new population by selecting individuals with relatively higher fitness from the present popu-
lation for reproduction and then performing recombination and mutation operations on these
selected individuals. Based on Holland’s SGA [8], there have been many variations and ex-
tensions developed, involving GA’s macro-structure and micro-structure [5].

Most GAs studied so far are haploidy-based, i.e., they operate on a set of single-stranded
chromosomes. However, haploid genotype is the simplest genotype found in nature. In nature,
most organisms have a genotype form of diploid, i.e., a set of double-stranded chromosomes.
As the genetic material that is propagated from generation to generation, deoxyribonucleic
acid (DNA) molecules consist of two long chains twisted around one another in a double-
stranded helix [7]. In eukaryotes DNA combines with proteins to form chromosomes. The two
chains in DNA are held together by base pairs. DNA consists of four kinds of bases joined to
a sugar-phosphate backbone. The four bases are adenine (A), guanine (G), thymine (T) and
cytosine (C). They are paired in DNA according to a complementary pairing rule: A pairs
with T and G pairs with C. This pairing rule results in two complementary strands in DNA.brought to you by COREView metadata, citation and similar papers at core.ac.uk
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When the double-stranded chromosomes are exposed to the environment of the organism,
dominance mechanism (an important genotype-to-phenotype mapping mechanism) comes to
effect by expressing dominant genes (segments of DNA) while repressing recessive genes.

In this paper, inspired by the phenomena of complementarity and dominance mechanisms
that broadly exist in nature, we propose a new genetic algorithm, called primal-dual genetic
algorithm (PDGA). Within PDGA, each chromosome is associated with a dual chromosome
that is of maximum distance away from it in genotype in a given distance space, e.g., the
Hamming distance space. When a new population is created, a set of individuals is selected to
evaluate their dual chromosomes to give their dual chromosomes that are superior chances to
be expressed into the next generation. Through the primal-dual mapping between the primal-
dual chromosomes, PDGA’s exploration capacity in the search space is improved and thus its
searching efficiency as a whole is improved.

The rest of this paper first describes the framework of PDGA, next compares PDGA with
Collard and his co-workers’ Dual Genetic Algorithm (DGA) [2, 3], then provides experimen-
tal results comparing PDGA with SGA and DGA on a typical test suite, and finally presents
conclusions as well as discussions on potential future works relevant to PDGA.

2 Primal-Dual Genetic Algorithm

2.1 Definitions

Definition 1. A chromosome that is explicitly recorded in the population of a GA is called a
primal chromosome. Given a distance space and relevant distance measure, the chromosome
that has the maximum distance to a primal chromosome is called its dual chromosome. The
transformation function from a primal chromosome to its dual is called primal-dual mapping.

Given a primal chromosome � , its dual is denoted by ���������
	���
���� where ����	���
���� is the
primal-dual mapping function. Note that � and ��� are primal-dual to each other with respect to
the given distance space, i.e., �������
	���
��
���������
	���
����
	���
������ . For GAs with binary-encoded
representation of genotype naturally the Hamming distance, i.e., the number of locations at
which corresponding bits of two chromosome differ, can be used as the distance measure
between two chromosomes. A pair of chromosomes is then said to be primal-dual to each
other if their Hamming distance is the maximum (equal to their length) in the search space.
In other words, given a chromosome ����
���� �!�#"$�$�%�%�&�!�#'(�*),+-�/.102�$354 ' of fixed length 6 ,
its dual is defined as its complementary chromosome, i.e., � � �87�9�:
 7��� �57�#"$�$�%�%���;7�#'(�<)=+
where 7�#>?�@3BAC�(>D
�EF�/3;�$�%�%�&� 6 � . In this case we can say that � is mapped to its dual ��� by
the Hamming distance mapping, vice versa. In this paper we will deal with binary-encoded
GAs and naturally use the Hamming distance as the primal-dual mapping function.

Definition 2. If the two chromosomes of a primal-dual pair have different fitness, the chromo-
some with higher fitness is called a superior chromosome while the one with lower fitness is
an inferior chromosome. If the primal-dual chromosomes have equal fitness, they are called
tie chromosomes or they are said to form a tie pair.

Here we use the definition of superior and inferior to deal with competition between
primal-dual chromosomes. It is different from the natural gene expression mechanism where
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begin
parameterize( � , ��� , ��� );��� � 0 ;
initializePopulation 
 � 
�0��!� ;
evaluatePopulation 
 � 
 0���� ;	 
 0;� := selectForDualEvaluation 
 � 
 0;�!� ;
for each individual � in

	 
 0;� do . evaluate
	 
 0�� 4

evaluateDualChromosome( �
� ); .%�(�2� ���
	���
���� 4
if 
 
��(� ��� 
 
���� then � � � �#� ; . replace � with its dual �#� 4

endfor;
repeat

� ��
 � � � � selectForReproduction 
 � 
 � �!� ;
recombine 
 � ��
 � �!� ;
mutate 
 � ��
 � �!� ;
evaluatePopulation 
 � � 
 � �!� ;	 
 � � := selectForDualEvaluation 
 � � 
 � �!� ;
for each individual � in

	 
 � � do . evaluate
	 
 � � 4

evaluateDualChromosome( � � ); .%� � � ���
	���
���� 4
if 
 
��(����� 
 
���� then � � � �(� ; . replace � with its dual �#� 4

endfor;��� � ��
 3 ;
until

������� E���	 ��� � ��������� ; . e.g.,
� � � ��� � (maximum generation) 4

end;

Figure 1: Pseudocode for PDGA.

the concept of dominant and recessive genes is applied. In nature the double-stranded chro-
mosomes compete at gene level. When a dominant gene and a recessive gene meet and com-
pete together the dominant gene dominates the recessive one and gets expressed in pheno-
type while the recessive gene is not expressed. In the proposed PDGA primal-dual chromo-
somes compete at the chromosome level and the superior chromosome of a primal-dual pair
is not always expressed in the population since not all the primal chromosomes are subject to
primal-dual mapping operation or dual evaluation.

Definition 3. A primal-dual mapping operation or dual evaluation is called valid if the ob-
tained dual chromosome is superior to the primal chromosome; otherwise, it is called invalid.

Obviously, valid primal-dual mapping operations or dual evaluations are expected to be
beneficial to GA’s performance. This is just what PDGA pursues.

2.2 Framework of PDGA

With above definitions, we can now give out the framework of PDGA in the form of pseu-
docode in Figure 1, where � , �!� , �"� are the population size, crossover probability and muta-
tion probability respectively, and 
 
���� denotes the fitness of an individual � . From Figure 1,
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it can be seen that PDGA differs from traditional SGA in that PDGA introduces into SGA a
process of selecting primal chromosomes for dual evaluations and replacing selected inferior
chromosomes with their superior duals. Except for this, all the genetic operations including
reproduction selection, crossover and mutation are the same for SGA and PDGA.

Within PDGA, when a new population � � 
 � � at generation
�

has just been created and
evaluated and before the next generation starts, a set

	 
 � � of primal individuals from � � 
 � �
are selected to evaluate their duals. For a selected primal chromosome � ) 	 
 � � , if its dual�(�B� ���
	���
���� is evaluated to be better than � , � is replaced with its dual ��� ; otherwise, �
will stay intact and keep expressed into the next generation. That is, within PDGA only valid
primal-dual mappings take effect to give dual chromosomes that are superior chances to be
expressed. This is similar to the dominance mechanism used in nature and is reasonable to
improve the average fitness of the population and protect superior primal chromosomes found
so far. Now what is left unsolved with PDGA is how to select individuals from � � 
 � � to form
the set

	 
 � � for dual chromosome evaluation. This is analyzed and described below.

2.3 Selection Scheme for Dual Chromosome Evaluation

From above discussion, it is clear that the scheme of selecting primal chromosomes for dual
evaluation should try to maximize valid primal-dual mappings. With this goal associated, the
selection scheme should concern two questions: 1. Which primal chromosomes in a popula-
tion should be selected? and 2. How many primal chromosomes should be selected?

The first question is relatively easy to answer. Since only valid primal-dual mappings take
effect and performing primal-dual mapping on chromosomes with low fitness is more likely
to be valid, we can select primal chromosomes with low fitness from � ��
 � � to form

	 
 � � .
To answer the second question, let us briefly look at the dynamic behavior of traditional

genetic algorithms. Holland [8] first proposed the notation of schema to describe a set of bi-
nary strings of fixed length that have similarities at certain positions. Holland worked out the
schema theorem for GAs that use the fitness proportionate selection, 1-point crossover and
bit mutation. The schema theorem states that short, low-order, better than average schemas
receive an exponentially increasing number of trials in the subsequent generations. Stephens
and Waelbroeck [10] have derived a new schema theorem based on the concept of effective fit-
ness showing that schemas with higher than average effective fitness receive an exponentially
increasing number of trials over time.

Both schema theorems also indicate that schemas or strings with less than average fitness
or average effective fitness receive an exponentially decreasing number of trials over time.
This means that inferior primal chromosomes in the population will decrease at an exponen-
tial rate since they usually have less than average fitness or average effective fitness. To test
this, experiments were carried out running SGA on a typical test suite, to be described in Sec-
tion 4 later on. The operator and parameter settings of SGA are described in Section 5.1. On
each test problem, 100 runs of SGA were executed1. Let ��>�����
 � � denote the actual number of
inferior primal chromosomes in the population � � 
 � � at generation

�
and

� >�����
 � � � ��>�����
 � ��� �
denote the ratio of inferior primal chromosomes in � � 
 � � . For each run

� >�����
 � � was recorded
over generation

�
. The experimental results, averaged over 100 runs, are shown in Figure 2.

From Figure 2 it can be seen that
� >�����
 � � decreases approximately exponentially over time to

1In order to help analyzing the main experimental results given in Section 5.2 the same 100 random seeds as
in the main experiments were used here to create initial populations.
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Figure 2: Ratio of inferior primal chromosome in the population against generations of SGA on the test set.

0 or an approximately stable value.
The schema theorems and our preliminary experiments indicate that an exponentially

decreasing scheme should be used to decide the number of primal individuals to be selected
for dual evaluation. Let ��� 
 � � denote the actual number of primal chromosomes selected from
� ��
 � � for dual evaluation at generation

�
, i.e., ���1
 � � ��� 	 
 � ��� . Ideally ���5
 � � should be equal to�
>�����
 � � . It is difficult to achieve this since �&>�����
 � � is unknown in advance. However, it is clear

that ��� 
 � � should decrease exponentially over time
�
.

Given the above discussions, we summarize the scheme of selecting primal chromosomes
from the population � � 
 � � for dual evaluation in pseudocode in Figure 3. In Figure 3, � is the
generational gap to update the value of variable ���5
 � � , � and 	 ( 0�
 � � 	 
 3 ) control the
initial value of ���1
 � � and its decreasing speed respectively, � ( 0

 � 
 � ) is the minimal
number of primal chromosomes to be selected for dual evaluation, and � ��� is the ceiling func-
tion. With this selection scheme, the value of ��� 
 � � starts from an initial value, decreases by
a factor of 	 every � generations until a preset minimum number � is reached, and thereafter
keeps unchanged. For each generation

�
, ��� 
 � � least fit primal chromosomes are selected for

dual evaluations. Incorporating Figure 3 into Figure 1 completes the framework of PDGA.

3 Collard and Co-workers’ Dual Genetic Algorithm (DGA)

Collard and his co-workers have proposed a genetic algorithm, first called Double-based Ge-
netic Algorithm [2] and then renamed Dual Genetic Algorithm [3]. DGA also manipulates
pairs of twins in the population The initial aim of DGA is to improve the performance of a
GA by adding one single meta-bit in front of the regular bits. This single meta-bit is simi-
lar to introns (i.e. non-coding genes) in DNA molecule that can influence the expression of
exons (regular coding genes). This meta-bit in DGA alters the phenotype of the overall chro-
mosome. If the meta-bit is activated (“1”) all regular bits are translated to their complement
for fitness evaluation, otherwise they keep their original value for fitness evaluation. Conse-
quently, there may exist complementary individuals in the population that represent the same
phenotype while have fundamentally different genotype. The added meta-bit undergoes the
same genetic operations in DGA as other regular bits do.

From the above descriptions, it can be seen that both PDGA and DGA are inspired by the
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Procedure selectForDualEvaluation ��� � ������� :
begin

if ���
	 then� � �����
���������
��� ; ��� controls � � ����� ’s initial value, i.e., � � ��	����
else if ( ��������� 	 � update � � ����� every � generations �� � ����� := max �!�#"$� � � ���&%'���(�*),+-� ; �." controls � � ����� ’s decreasing speed �
endif;
� � � ����� := sortPopulation ��� � ������� ; � sort population in increasing fitness order �
truncate the first � � ����� individuals in � � � ����� to form /0����� ;

end;

Figure 3: Pseudocode for selecting primal chromosomes for dual evaluation.

complementary mechanism in DNA duplex structure. In DGA mutating the meta-bit enables
an individual to make a long jump to its complement in the search space while in PDGA when
an inferior primal chromosome is selected into the set

	 
 � � , it will get the chance to jump to
its superior dual with a maximum distance away in the search space with a chosen distance
measure. Although both PDGA and DGA make use of the complementary mechanism in na-
ture, physically they are encoded as a single-stranded string instead of as a double-stranded
chromosome as in DNA molecule. Hence both can be called pseudo-diploid and work on a
pseudo-pair of complementary chromosomes. Though inspired from similar natural mecha-
nism, PDGA and DGA do have different properties. There are two main differences. First,
in DGA the jumping between complementary chromosomes is driven by mutation and hence
by chance. It uses no dominance mechanism and is blind in the sense of applying comple-
ment mechanism. PDGA is dominance-based using fitness as its dominance mechanism that
works at the chromosome level. This is reflected in the selection of low fit chromosomes for
evaluating their dual chromosomes and in the fact of only replacing inferior primal chromo-
some with its superior dual. Second, DGA doubles the size of the search space in genotype
by adding a meta-bit while with PDGA the size of the genotypical space remains unchanged.

4 The Test Suite

1. One-Max Problem: This problem simply aims to maximize ones in a binary string. The
fitness of a string is the number of ones it contains. A string length of 100 bits is used for this
study. And the optimal solution has a fitness of 100.

2. Royal Road Function: This function is the same as Mitchell, Forrest and Holland’s Royal
Road function 1 3 [9] that was devised to investigate GA’s performance with respect to
schema processing and recombination. It is defined on a sixty-four bit string consisting of
eight contiguous building blocks of eight bits, each of which contributes 2 >��43 ( E � 3;�$�%�%�&�53 )
to the total fitness if all of the eight bits are set to one. The fitness of a bit string � is com-
puted by summing the coefficients 2 > corresponding to each of the given building blocks6 > of which � is an instance. We denote by � )76 > the situation that � is an instance of6 > . That is, the Royal Road function is defined as follows: 
 
����9� 8 >:9<;>:9�� 2 >�= > 
���� where
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= > 
���� � .�35� if � ) 6 > � 02� otherwise 4 . The optimal solution ����� 3;3������ 3 has a fitness of 64.

3. Deceptive Function: Deceptive functions are a family of functions where there exist low-
order building blocks that do not combine to form higher-order building blocks: instead they
form building blocks resulting in a deceptive solution that is sub-optimal itself or near a sub-
optimal solution. Deceptive functions are devised as difficult test functions for GAs. It is even
claimed that the only challenging problems for GAs are problems that involve some degree of
deception [11]. By explicitly calculating and comparing all schema fitness values, Goldberg
[6] devised an order-3 minimum fully deceptive problem as follows:

f(000) = 28 f(001) = 26 f(010) = 22 f(011) = 0
f(100) = 14 f(101) = 0 f(110) = 0 f(111) = 30

where all the order-1 and order-2 building blocks (e.g., “0**” and “*00”) in the search space
are deceptive and will lead the genetic search away from the global optimum “111” and
instead toward the local optimum “000”. In this study, we constructed a deceptive function
that consists of 10 copies of the above order-3 minimum deceptive subproblem. This function
has an optimum fitness of 300.

5 Experimental Study

5.1 Design of Experiment

Experiments were carried out to compare PDGA with traditional SGA and Collard and Au-
rand’s DGA. All the GAs were generational and used typical genetic operator and parameter
settings: 1-point crossover with a fixed crossover probability � � �=0	��
 , traditional bit mutation
with mutation probability � � ��0	� 0;023 recommended by De Jong [4], and fitness proportion-
ate selection with the Stochastic Universal Sampling (SUS) [1] and elitist model [4]. The
population size � was set to 128 for all the GAs. PDGA-specific parameters were set as fol-
lows: � ��3 , � � 	 ��0	�
� and � ��3 . With this setting, the value of ���1
 � � starts from � ���
and is halved every generation until ��� 
��;�F��3 at generation 7.

For each experiment of combining different GA and test problem, 100 independent runs
were executed with the same 100 different random seeds to generate initial populations. For
each run, the best-so-far fitness was recorded every 100 evaluations2 as well as the mean
fitness over every 100 evaluations and the maximum allowable number of evaluations was set
to 20000. Each experimental result was averaged over 100 independent runs.

5.2 Experimental Result and Analysis

The experimental results on different test functions are shown in Figure 4 through Figure 6
respectively. From these figures, it can be seen that in general PDGA performs better than
SGA and DGA on the test problems.

On the One-Max problem, PDGA and SGA perform as well as each other but both per-
form better than DGA. During early stage of searching, within around 2500 evaluations the
mean fitness of the population with PDGA is a little higher than that with SGA. This is be-
cause with SGA on One-Max the ratio of inferior chromosomes in the population

� >�����
 � �
2Here, only those primal chromosomes changed by crossover and mutation operations were evaluated and

counted into the number of evaluations. With PDGA all dual evaluations, valid or not, were also counted into
the total number of evaluations.
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Figure 4: Best-so-far (Left) and mean (Right) fitness against evaluations of GAs on the One-Max problem.
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Figure 5: Best-so-far (Left) and mean (Right) fitness against evaluations of GAs on the Royal Road Function.

decreases from 0.394 at the initial generation to 0.001 at generation 25 (see Figure 2). With
PDGA, taking into account that � � 3 � 3 , that we only evaluate primal chromosomes
changed by genetic operation and count them together with all dual evaluations into the total
number of evaluations, and that the effect of valid primal-dual mappings during early gen-
erations, the number of valid primal-dual mappings decreases to near zero after about 2500
evaluations. However, the valid primal-dual mappings with PDGA seem to have no contri-
bution to the best-so-far fitness of the population. This is because the basic building block of
One-Max is only one bit (i.e., order-1), which makes it easy for the SGA to find each build-
ing block (i.e., “1” at each locus). DGA performs worse than SGA and PDGA on both the
best-so-far and mean fitness performances due to its blindness in mutating the meta-bit.

On the Royal Road function, PDGA outperforms both SGA and DGA while SGA outper-
forms DGA. And the performance difference between GAs is now much bigger than that on
the One-Max problem. This is because the basic building blocks are now of order-8 instead
of order-1 as in the One-Max problem. The increased size of basic building blocks makes
it much harder for SGA to search them and hence makes the valid primal-dual mappings
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Figure 6: Best-so-far (Left) and mean (Right) fitness against evaluations of GAs on the Deceptive Function.

(though the ratio
� >�����
 � � is quite small, see Figure 2) with PDGA during the early search

stage more precious. For example to achieve the fitness level of 40 (i.e., 5 building blocks),
it took PDGA about 2800 and 6300 evaluations while it took SGA about 8700 and 16300
evaluations with respect to best-so-far and mean fitness respectively. For the same reason as
on the One-Max problem, DGA is beaten again on Royal Road function but with a heavier
degree. For example, it took DGA about 11000 and 14800 evaluations to find only four build-
ing blocks (equivalent to the fitness value of 32) with respect to best-so-far fitness and mean
fitness respectively.

On the Deceptive function, the situation seems quite different. DGA slightly outperforms
SGA while both are beaten by PDGA. Within 20000 evaluations PDGA found the optimal
solution in 93 out of the 100 runs, while DGA and SGA only achieved the optimal solution
in 16 and 19 out of the 100 runs respectively. One thing to note is that now PDGA seems
working better during late stage of searching instead of during early stage as it did on One-
Max and Royal Road problems. Another notable thing is that during late searching stage
the mean fitness of the population with PDGA is less than that with SGA and DGA. The
reason to these two observations is as follows: with PDGA during early stage valid primal-
dual mappings from basic units “011”, “101”, “110” to their duals slow down the growth of
building blocks “000” and “111”, hence the best-so-far fitness grows a little slower. When
certain amount of building blocks “000” and “111” have been built up, valid primal-dual
mappings (though a few in number, due to only one dual evaluation per generation), which
convert strings with more “000” units to strings with more “111” units, work quite efficiently,
pushing the best individual towards optimum faster than SGA and DGA. Meanwhile, these
valid mappings give crossover more chances to create non “000” or “111” units on certain
loci and hence lower the mean fitness of the population a little.

6 Conclusions and Future Works

Inspired by the complementarity and dominance mechanisms in nature a new variation of ge-
netic algorithm, the primal-dual genetic algorithm, is proposed. PDGA operates on a pseudo-
pair of chromosomes, which are primal-dual to each other in the sense of maximum distance
in genotype in a given distance space, e.g., the Hamming distance used for the primal-dual
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mapping in this paper. In PDGA just before entering next generation a set of relatively low
fit individuals is selected to give them chance to jump to their superior dual chromosomes.

Experiments were carried out to compare PDGA with traditional SGA and Collard and
co-workers’ DGA using typical genetic operator and parameter settings on a set of benchmark
test problems. The experimental results demonstrate that PDGA outperforms both SGA and
DGA. When solving non-deceptive functions PDGA works efficiently during early search
stage, while on deceptive functions PDGA works more efficiently when the GA has built
up proper deceptive building blocks since they are usually complementary to optimal build-
ing blocks [11]. DGA was beaten by PDGA due to its blindness in applying complement
mechanism. In general, our experiments indicate that PDGA is a good candidate GA.

In this paper the Hamming distance was used as the primal-dual mapping function. This
is quite natural for binary-encoded GAs. However, the principle of PDGA doesn’t exclude
other distance measures. Here the key idea is to develop a prima-dual mapping policy that
maps a primal chromosome to its dual with a maximum distance away in a distance space
specific to the problem representation. This way through the primal-dual mapping of two
chromosomes, PDGA’s exploration capacity in the search space is improved and hence its
searching efficiency may be improved. Expanding the prima-dual mapping mechanism to
real-encoded or permutation-encoded GAs is thus one future work on PDGA.

Another key point with PDGA is the scheme of selecting primal chromosomes for dual
evaluation. In this study, a simple deterministic policy that selects an exponentially decreasing
number of least fit chromosomes was applied. A selection scheme that can adaptively adjust
the value of ��� 
 � � over time

�
may further improve the performace of PDGA, which falls in

another future work on PDGA.
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