42,621 research outputs found
Spherical squeeze-film hybrid bearing with small steady-state radial displacement
Spherical squeeze-film hybrid bearing with small steady-state radial displacement analysi
The solution of special squeeze film gas bearing problems by an improved numerical technique
Computer program for solving squeeze film gas bearing problem
Reactively sputtered RuO2 diffusion barriers
The thermal stability of reactively sputtered RuO2 films is investigated from the point of view of their application as diffusion barriers in silicon contact metallizations with an Al overlayer. Backscattering spectra of Si/RuO2/Al samples and electrical measurements on shallow junction diodes with Si/TiSi2.3/RuO2/Al contacts both show that RuO2 films are effective diffusion barriers between Al and Si for 30-min annealing at temperatures as high as 600°C
Valence bond solid order near impurities in two-dimensional quantum antiferromagnets
Recent scanning tunnelling microscopy (STM) experiments on underdoped
cuprates have displayed modulations in the local electronic density of states
which are centered on a Cu-O-Cu bond (Kohsaka et. al., cond-mat/0703309). As a
paradigm of the pinning of such bond-centered ordering in strongly correlated
systems, we present the theory of valence bond solid (VBS) correlations near a
single impurity in a square lattice antiferromagnet. The antiferromagnet is
assumed to be in the vicinity of a quantum transition from a magnetically
ordered Neel state to a spin-gap state with long-range VBS order. We identify
two distinct classes of impurities: i) local modulation in the exchange
constants, and ii) a missing or additional spin, for which the impurity
perturbation is represented by an uncompensated Berry phase. The `boundary'
critical theory for these classes is developed: in the second class we find a
`VBS pinwheel' around the impurity, accompanied by a suppression in the VBS
susceptibility. Implications for numerical studies of quantum antiferromagnets
and for STM experiments on the cuprates are noted.Comment: 41 pages, 6 figures; (v2) Minor changes in terminology, added
reference
Electrical characteristics of amorphous iron-tungsten contacts on silicon
The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities, pc=1×10^−7 and pc=2.8×10^−6, were measured on n+ and p+ silicon, respectively. These values remain constant after thermal treatment up to at least 500°C. A barrier height, φBn=0.61 V, was measured on n-type silicon
Photoemission Spectroscopy of Magnetic and Non-magnetic Impurities on the Surface of the BiSe Topological Insulator
Dirac-like surface states on surfaces of topological insulators have a chiral
spin structure that suppresses back-scattering and protects the coherence of
these states in the presence of non-magnetic scatterers. In contrast, magnetic
scatterers should open the back- scattering channel via the spin-flip processes
and degrade the state's coherence. We present angle-resolved photoemission
spectroscopy studies of the electronic structure and the scattering rates upon
adsorption of various magnetic and non-magnetic impurities on the surface of
BiSe, a model topological insulator. We reveal a remarkable
insensitivity of the topological surface state to both non-magnetic and
magnetic impurities in the low impurity concentration regime. Scattering
channels open up with the emergence of hexagonal warping in the high-doping
regime, irrespective of the impurity's magnetic moment.Comment: 5 pages, 4 figure
Suppression of low-energy Andreev states by a supercurrent in YBa_2Cu_3O_7-delta
We report a coherence-length scale phenomenon related to how the high-Tc
order parameter (OP) evolves under a directly-applied supercurrent. Scanning
tunneling spectroscopy was performed on current-carrying YBa_2Cu_3O_7-delta
thin-film strips at 4.2K. At current levels well below the theoretical
depairing limit, the low-energy Andreev states are suppressed by the
supercurrent, while the gap-like structures remain unchanged. We rule out the
likelihood of various extrinsic effects, and propose instead a model based on
phase fluctuations in the d-wave BTK formalism to explain the suppression. Our
results suggest that a supercurrent could weaken the local phase coherence
while preserving the pairing amplitude. Other possible scenarios which may
cause the observed phenomenon are also discussed.Comment: 6 pages, 4 figures, to appear in Physical Review
WxN1–x alloys as diffusion barriers between Al and Si
Reactively sputtered tungsten nitride (WxN1–x) layers are investigated as diffusion barriers between Al overlayers and Si shallow n + -p junctions. Both amorphous W80 N20 and polycrystalline W60 N40 films were found to be very effective in preserving the integrity of the n + -p diodes for 30-min vacuum annealing up to 575 °C. Diode failure at higher temperatures is caused by localized penetration of Al into through the WxN1–x barriers. The effectiveness of the barrier decreases for polycrystalline W90 N10 and is worse for pure W
Transfer Learning for Content-Based Recommender Systems using Tree Matching
In this paper we present a new approach to content-based transfer learning
for solving the data sparsity problem in cases when the users' preferences in
the target domain are either scarce or unavailable, but the necessary
information on the preferences exists in another domain. We show that training
a system to use such information across domains can produce better performance.
Specifically, we represent users' behavior patterns based on topological graph
structures. Each behavior pattern represents the behavior of a set of users,
when the users' behavior is defined as the items they rated and the items'
rating values. In the next step we find a correlation between behavior patterns
in the source domain and behavior patterns in the target domain. This mapping
is considered a bridge between the two domains. Based on the correlation and
content-attributes of the items, we train a machine learning model to predict
users' ratings in the target domain. When we compare our approach to the
popularity approach and KNN-cross-domain on a real world dataset, the results
show that on an average of 83 of the cases our approach outperforms both
methods
Measurement of an Exceptionally Weak Electron-Phonon Coupling on the Surface of the Topological Insulator BiSe Using Angle-Resolved Photoemission Spectroscopy
Gapless surface states on topological insulators are protected from elastic
scattering on non-magnetic impurities which makes them promising candidates for
low-power electronic applications. However, for wide-spread applications, these
states should have to remain coherent at ambient temperatures. Here, we studied
temperature dependence of the electronic structure and the scattering rates on
the surface of a model topological insulator, BiSe, by high resolution
angle-resolved photoemission spectroscopy. We found an extremely weak
broadening of the topological surface state with temperature and no anomalies
in the state's dispersion, indicating exceptionally weak electron-phonon
coupling. Our results demonstrate that the topological surface state is
protected not only from elastic scattering on impurities, but also from
scattering on low-energy phonons, suggesting that topological insulators could
serve as a basis for room temperature electronic devices.Comment: published version, 5 pages, 4 figure
- …