2,398 research outputs found

    Probing models of information spreading in social networks

    Full text link
    We apply signal processing analysis to the information spreading in scale-free network. To reproduce typical behaviors obtained from the analysis of information spreading in the world wide web we use a modified SIS model where synergy effects and influential nodes are taken into account. This model depends on a single free parameter that characterize the memory-time of the spreading process. We show that by means of fractal analysis it is possible -from aggregated easily accessible data- to gain information on the memory time of the underlying mechanism driving the information spreading process.Comment: 6 pages, 6 figure

    Absorption in Ultra-Peripheral Nucleus-Atom Collisions in Crystal

    Full text link
    The Glauber theory description of particle- and nucleus-crystal Coulomb interactions at high-energy is developed. The allowance for the lattice thermal vibrations is shown to produce strong absorption effect which is of prime importance for quantitative understanding of the coherent Coulomb excitation of ultra-relativistic particles and nuclei passing through the crystal.Comment: 8 pages, LaTe

    Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation

    Full text link
    We show that gauge invariant quantum link models, Abelian and non-Abelian, can be exactly described in terms of tensor networks states. Quantum link models represent an ideal bridge between high-energy to cold atom physics, as they can be used in cold-atoms in optical lattices to study lattice gauge theories. In this framework, we characterize the phase diagram of a (1+1)-d quantum link version of the Schwinger model in an external classical background electric field: the quantum phase transition from a charge and parity ordered phase with non-zero electric flux to a disordered one with a net zero electric flux configuration is described by the Ising universality class.Comment: 9 pages, 9 figures. Published versio

    Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks

    Get PDF
    Tensor network algorithms provide a suitable route for tackling real-time dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1) lattice gauge theory in (1+1) dimensions in the presence of dynamical matter for different mass and electric field couplings, a theory akin to quantum-electrodynamics in one-dimension, which displays string-breaking: the confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric field and particle fluctuations: we determine a dynamical state diagram for string breaking and quantitatively evaluate the time-scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present the variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.Comment: 15 pages, 25 figures. Published versio

    Synthetic Helical Liquids with Ultracold Atoms in Optical Lattices

    Full text link
    We discuss a platform for the synthetic realization of key physical properties of helical Tomonaga Luttinger liquids (HTLLs) with ultracold fermionic atoms in one-dimensional optical lattices. The HTLL is a strongly correlated metallic state where spin polarization and propagation direction of the itinerant particles are locked to each other. We propose an unconventional one-dimensional Fermi-Hubbard model which, at quarter filling, resembles the HTLL in the long wavelength limit, as we demonstrate with a combination of analytical (bosonization) and numerical (density matrix renormalization group) methods. An experimentally feasible scheme is provided for the realization of this model with ultracold fermionic atoms in optical lattices. Finally, we discuss how the robustness of the HTLL against back-scattering and imperfections, well known from its realization at the edge of two-dimensional topological insulators, is reflected in the synthetic one-dimensional scenario proposed here

    Quantum Field Theory for the Three-Body Constrained Lattice Bose Gas -- Part II: Application to the Many-Body Problem

    Full text link
    We analyze the ground state phase diagram of attractive lattice bosons, which are stabilized by a three-body onsite hardcore constraint. A salient feature of this model is an Ising type transition from a conventional atomic superfluid to a dimer superfluid with vanishing atomic condensate. The study builds on an exact mapping of the constrained model to a theory of coupled bosons with polynomial interactions, proposed in a related paper [11]. In this framework, we focus by analytical means on aspects of the phase diagram which are intimately connected to interactions, and are thus not accessible in a mean field plus spin wave approach. First, we determine shifts in the mean field phase border, which are most pronounced in the low density regime. Second, the investigation of the strong coupling limit reveals the existence of a new collective mode, which emerges as a consequence of enhanced symmetries in this regime. Third, we show that the Ising type phase transition, driven first order via the competition of long wavelength modes at generic fillings, terminates into a true Ising quantum critical point in the vicinity of half filling.Comment: 22 pages, 5 figure
    • …
    corecore