12,489 research outputs found
Deuteron photodisintegration with polarized photons at astrophysical energies
Following precise experimental studies at the Duke Free-Electron Laser
Laboratory, we discuss photodisintegration of deuterons with 100% linearly
polarized photons using a model independent theoretical approach taking
together and amplitudes simultaneously. The isoscalar
contribution is also taken exactly into account. From the existing experimental
measurement on doubly polarized thermal neutron capture, it is seen that the
isoscalar contribution could be of the same order of magnitude as the
experimentally measured cross sections at energies relevant to Big Bang
Nucleosynthesis (BBN). Therefore appropriate measurements on deuteron
photodisintegration are suggested to empirically determine the
contribution at astrophysical energies.Comment: 5 Pages, Latex-2
Coded Modulation Assisted Radial Basis Function Aided Turbo Equalisation for Dispersive Rayleigh Fading Channels
In this contribution a range of Coded Modulation (CM) assisted Radial Basis Function (RBF) based Turbo Equalisation (TEQ) schemes are investigated when communicating over dispersive Rayleigh fading channels. Specifically, 16QAM based Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) are evaluated in the context of an RBF based TEQ scheme and a reduced-complexity RBF based In-phase/Quadrature-phase (I/Q) TEQ scheme. The Least Mean Square (LMS) algorithm was employed for channel estimation, where the initial estimation step-size used was 0.05, which was reduced to 0.01 for the second and the subsequent TEQ iterations. The achievable coding gain of the various CM schemes was significantly increased, when employing the proposed RBF-TEQ or RBF-I/Q-TEQ rather than the conventional non-iterative Decision Feedback Equaliser - (DFE). Explicitly, the reduced-complexity RBF-I/Q-TEQ-CM achieved a similar performance to the full-complexity RBF-TEQ-CM, while attaining a significant complexity reduction. The best overall performer was the RBF-I/Q-TEQ-TTCM scheme, requiring only 1.88~dB higher SNR at BER=10-5, than the identical throughput 3~BPS uncoded 8PSK scheme communicating over an AWGN channel. The coding gain of the scheme was 16.78-dB
On conformal measures and harmonic functions for group extensions
We prove a Perron-Frobenius-Ruelle theorem for group extensions of
topological Markov chains based on a construction of -finite conformal
measures and give applications to the construction of harmonic functions.Comment: To appear in Proceedings of "New Trends in Onedimensional Dynamics,
celebrating the 70th birthday of Welington de Melo
Fast algorithms for large scale generalized distance weighted discrimination
High dimension low sample size statistical analysis is important in a wide
range of applications. In such situations, the highly appealing discrimination
method, support vector machine, can be improved to alleviate data piling at the
margin. This leads naturally to the development of distance weighted
discrimination (DWD), which can be modeled as a second-order cone programming
problem and solved by interior-point methods when the scale (in sample size and
feature dimension) of the data is moderate. Here, we design a scalable and
robust algorithm for solving large scale generalized DWD problems. Numerical
experiments on real data sets from the UCI repository demonstrate that our
algorithm is highly efficient in solving large scale problems, and sometimes
even more efficient than the highly optimized LIBLINEAR and LIBSVM for solving
the corresponding SVM problems
Chiral Electronics
We consider the properties of electric circuits involving Weyl semimetals.
The existence of the anomaly-induced chiral magnetic current in a Weyl
semimetal subjected to magnetic field causes an interesting and unusual
behavior of such circuits. We consider two explicit examples: i) a circuit
involving the "chiral battery" and ii) a circuit that can be used as a "quantum
amplifier" of magnetic field. The unique properties of these circuits stem from
the chiral anomaly and may be utilized for creating "chiral electronic"
devices.Comment: 5 pages, 2 figures; final version to appear in Physical Review
- …