521 research outputs found

    The future of digital scholarship

    Full text link

    Radiofrequency applicator concepts for simultaneous MR imaging and hyperthermia treatment of glioblastoma multiforme: a 298 MHz(7.0 Tesla) thermal magnetic resonancesimulation study

    Get PDF
    Glioblastoma multiforme is the most frequent and most aggressive malignant brain tumor with de facto no long term curation by the use of current multimodal therapeutic approaches. The efficacy of brachytherapy and enhancing interstitial hyperthermia has been demonstrated. RF heating at ultrahigh fields (B0=7.0T, f=298MHz) has the potential of delivering sufficiently large thermal dosage for hyperthermia of relatively large tumor areas. This work focuses on electromagnetic field (EMF) simulations and provides realistic applicator designs tailored for simultaneous RF heating and MRI. Our simulations took advantage of target volumes derived from patient data, and our preliminary results suggest that RF power can be focused to both a small tumor area and a large clinical target volume

    Mitochondrial Dysfunction Underlies Cardiomyocyte Remodeling in Experimental and Clinical Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF), the most common progressive tachyarrhythmia, results in structural remodeling which impairs electrical activation of the atria, rendering them increasingly permissive to the arrhythmia. Previously, we reported on endoplasmic reticulum stress and NAD+ depletion in AF, suggesting a role for mitochondrial dysfunction in AF progression. Here, we examined mitochondrial function in experimental model systems for AF (tachypaced HL-1 atrial cardiomyocytes and Drosophila melanogaster) and validated findings in clinical AF. Tachypacing of HL-1 cardiomyocytes progressively induces mitochondrial dysfunction, evidenced by impairment of mitochondrial Ca2+-handling, upregulation of mitochondrial stress chaperones and a decrease in the mitochondrial membrane potential, respiration and ATP production. Atrial biopsies from AF patients display mitochondrial dysfunction, evidenced by aberrant ATP levels, upregulation of a mitochondrial stress chaperone and fragmentation of the mitochondrial network. The pathophysiological role of mitochondrial dysfunction is substantiated by the attenuation of AF remodeling by preventing an increased mitochondrial Ca2+-influx through partial blocking or downregulation of the mitochondrial calcium uniporter, and by SS31, a compound that improves bioenergetics in mitochondria. Together, these results show that conservation of the mitochondrial function protects against tachypacing-induced cardiomyocyte remodeling and identify this organelle as a potential novel therapeutic target

    Chiral quark-soliton model in the Wigner-Seitz approximation

    Get PDF
    In this paper we study the modification of the properties of the nucleon in the nucleus within the quark-soliton model. This is a covariant, dynamical model, which provides a non-linear representation of the spontaneously broken SU(2)_L X SU(2)_R symmetry of QCD. The effects of the nuclear medium are accounted for by using the Wigner-Seitz approximation and therefore reducing the complex many-body problem to a simpler single-particle problem. We find a minimum in the binding energy at finite density, a change in the isoscalar nucleon radius and a reduction of the in-medium pion decay constant. The latter is consistent with a partial restoration of chiral symmetry at finite density, which is predicted by other models.Comment: 30 pages, 13 figures; uses REVTeX and epsfi

    Radiofrequency applicator concepts for thermal magnetic resonance of brain tumors at 297 MHz (7.0 Tesla)

    Get PDF
    PURPOSE: Thermal intervention is a potent sensitizer of cells to chemo- and radiotherapy in cancer treatment. Glioblastoma multiforme (GBM) is a potential clinical target, given the cancer's aggressive nature and resistance to current treatment options. The annular phased array (APA) technique employing electromagnetic waves in the radiofrequency (RF) range allows for localized temperature increase in deep seated target volumes (TVs). Reports on clinical applications of the APA technique in the brain are still missing. Ultrahigh field magnetic resonance (MR) employs higher frequencies than conventional MR and has potential to provide focal temperature manipulation, high resolution imaging and noninvasive temperature monitoring using an integrated RF applicator (ThermalMR). This work examines the applicability of RF applicator concepts for ThermalMR of brain tumors at 297 MHz (7.0 Tesla). METHODS: Electromagnetic field (EMF) simulations are performed for clinically realistic data based on GBM patients. Two algorithms are used for specific RF energy absorption rate based thermal intervention planning for small and large TVs in the brain, aiming at maximum RF power deposition or RF power uniformity in the TV for 10 RF applicator designs. RESULTS: For both TVs , the power optimization outperformed the uniformity optimization. The best results for the small TV are obtained for the 16 element interleaved RF applicator using an elliptical antenna arrangement with water bolus. The two row elliptical RF applicator yielded the best result for the large TV. DISCUSSION: This work investigates the capacity of ThermalMR to achieve targeted thermal interventions in model systems resembling human brain tissue and brain tumors

    Kaon Condensation in the Bound-State Approach to the Skyrme Model

    Full text link
    We explore kaon condensation using the bound-state approach to the Skyrme model on a 3-sphere. The condensation occurs when the energy required to produce a KK^- falls below the electron fermi level. This happens at the baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and uuencode

    Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes

    Get PDF
    We report on the magnetic hyperthermia properties of chemically synthesized ferromagnetic 11 and 16 nm Fe(0) nanoparticles of cubic shape displaying the saturation magnetization of bulk iron. The specific absorption rate measured on 16 nm nanocubes is 1690+-160 W/g at 300 kHz and 66 mT. This corresponds to specific losses-per-cycle of 5.6 mJ/g, largely exceeding the ones reported in other systems. A way to quantify the degree of optimization of any system with respect to hyperthermia applications is proposed. Applied here, this method shows that our nanoparticles are not fully optimized, probably due to the strong influence of magnetic interactions on their magnetic response. Once protected from oxidation and further optimized, such nano-objects could constitute efficient magnetic cores for biomedical applications requiring very large heating power

    Towards a single-chip, implantable RFID system: is a single-cell radio possible?

    Get PDF
    We present an overview of progress towards single-chip RFID solutions. To date heterogeneous integration has been appropriate for non-biological systems. However, for in-vivo sensors and even drug delivery systems, a small form factor is required. We discuss fundamental limits on the size of the form factor, the effect of the antenna, and propose a unified single-chip RFID solution appropriate for a broad range of biomedical in-vivo device applications, both current and future. Fundamental issues regarding the possibility of single cell RF radios to interface with biological function are discussed

    A non-randomised, single-centre comparison of induction chemotherapy followed by radiochemotherapy versus concomitant chemotherapy with hyperfractionated radiotherapy in inoperable head and neck carcinomas

    Get PDF
    BACKGROUND: The application of induction chemotherapy failed to provide a consistent benefit for local control in primary treatment of advanced head and neck (H&N) cancers. The aim of this study was to compare the results of concomitant application of radiochemotherapy for treating locally advanced head-and-neck carcinoma in comparison with the former standard of sequential radiochemotherapy. METHODS: Between 1987 and 1995 we treated 122 patients with unresectable (stage IV head and neck) cancer by two different protocols. The sequential protocol (SEQ; 1987–1992) started with two courses of neoadjuvant chemotherapy (cisplatin [CDDP] + 120-h continuous infusions (c.i.) of folinic acid [FA] and 5-fluorouracil [5-FU]), followed by a course of radiochemotherapy using conventional fractionation up to 70 Gy. The concomitant protocol (CON; since 1993) combined two courses of FA/5-FU c.i. plus mitomycin (MMC) concomitantly with a course of radiotherapy up to 30 Gy in conventional fractionation, followed by a hyperfractionated course up to 72 Gy. Results from the two groups were compared. RESULTS: Patient and tumor characteristics were balanced (SEQ = 70, CON = 52 pts.). Mean radiation dose achieved (65.3 Gy vs. 71.6 Gy, p = 0.00), response rates (67 vs. 90 % for primary, p = 0.02), and local control (LC; 17.6% vs. 41%, p = 0.03), were significantly lower in the SEQ group, revealing a trend towards lower disease-specific (DSS; 19.8% vs. 31.4%, p = 0.08) and overall (14.7% vs. 23.7%, p = 0.11) survival rates after 5 years. Mucositis grades III and IV prevailed in the CON group (54% versus 44%). Late toxicity was similar in both groups. CONCLUSION: Concurrent chemotherapy seemed more effective in treating head and neck tumors than induction chemotherapy followed by chemoradiation, resulting in better local control and a trend towards improved survival
    corecore