2 research outputs found

    Targeting intermediary metabolism enhances the efficacy of BH3 mimetic therapy in haematological malignancies.

    Full text link
    BH3 mimetics are novel targeted drugs with remarkable specificity and potency and enormous potential to improve cancer therapy. However, acquired resistance is an emerging problem. We report the rapid development of resistance in chronic lymphocytic leukemia cells isolated from patients exposed to increasing doses of Navitoclax (ABT-263), a BH3 mimetic. To mimic such rapid development of chemoresistance, we have developed simple resistance models to three different BH3 mimetics, targeting BCL-2 (ABT-199), BCL-XL (A-1331852) or MCL-1 (A-1210477), in relevant haematological cancer cell lines. In these models, resistance could be attributed neither to consistent changes in expression levels of the anti-apoptotic proteins nor interactions among different pro- and anti-apoptotic BCL-2 family members. Using genetic silencing, pharmacological inhibition and metabolic supplementation, we report that targeting of glutamine uptake and its downstream signalling pathways, namely glutaminolysis, reductive carboxylation, lipogenesis, cholesterogenesis and mTOR signalling result in marked sensitisation of the chemoresistant cells to BH3 mimetic-mediated apoptosis. Furthermore, our findings highlight the possibility of repurposing widely used drugs, such as statins, to target intermediary metabolism and improve the efficacy of BH3 mimetic therapy

    Renin-Angiotensin Activation and Oxidative Stress in Early Heart Failure with Preserved Ejection Fraction.

    No full text
    Animal models have suggested a role of renin-angiotensin system (RAS) activation and subsequent cardiac oxidation in heart failure with preserved ejection fraction (HFpEF). Nevertheless, RAS blockade has failed to show efficacy in treatment of HFpEF. We evaluated the role of RAS activation and subsequent systemic oxidation in HFpEF. Oxidative stress markers were compared in 50 subjects with and without early HFpEF. Derivatives of reactive oxidative metabolites (DROMs), F2-isoprostanes (IsoPs), and ratios of oxidized to reduced glutathione (E h GSH) and cysteine (E h CyS) were measured. Angiotensin converting enzyme (ACE) levels and activity were measured. On univariate analysis, HFpEF was associated with male sex (p = 0.04), higher body mass index (BMI) (p = 0.003), less oxidized E h CyS (p = 0.001), lower DROMs (p = 0.02), and lower IsoP (p = 0.03). Higher BMI (OR: 1.3; 95% CI: 1.1-1.6) and less oxidized E h CyS (OR: 1.2; 95% CI: 1.1-1.4) maintained associations with HFpEF on multivariate analysis. Though ACE levels were higher in early HFpEF (OR: 1.09; 95% CI: 1.01-1.05), ACE activity was similar to that in controls. HFpEF is not associated with significant systemic RAS activation or oxidative stress. This may explain the failure of RAS inhibitors to alter outcomes in HFpEF
    corecore