2,336 research outputs found
Direct Experimental Evidence of Exciton-Phonon Bound States in Carbon Nanotubes
We present direct experimental observation of exciton-phonon bound states in
the photoluminescence excitation spectra of isolated single walled carbon
nanotubes in aqueous suspension. The photoluminescence excitation spectra from
several distinct single-walled carbon nanotubes show the presence of at least
one sideband related to the tangential modes, lying {200 meV} above the main
absorption/emission peak. Both the energy position and line shapes of the
sidebands are in excellent agreement with recent calculations [PRL {\bf
94},027402 (2005)] that predict the existence of exciton-phonon bound states, a
sizable spectral weight transfer to these exciton-phonon complexes and that the
amount of this transfer depends on the specific nanotube structure and
diameter. The observation of these novel exciton-phonon complexes is a strong
indication that the optical properties of carbon nanotubes have an excitonic
nature and also of the central role played by phonons in describing the
excitation and recombination mechanisms in carbon nanotubes
Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition
Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies
(V) were identified in ZnO nanorods (NRs) grown by low cost chemical bath
deposition. A transient behaviour in the photoluminescence (PL) intensity of
the two V states was found to be sensitive to the ambient environment and
to NR post-growth treatment. The largest transient was found in samples dried
on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for
the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV
exposure exhibited a transient behaviour in full agreement with the PL
transient indicating a clear role of atmospheric O on the surface defect
states. A model for surface defect transient behaviour due to band bending with
respect to the Fermi level is proposed. The results have implications for a
variety of sensing and photovoltaic applications of ZnO NRs
Carbon nanotube-guided thermopower waves
Thermopower waves are a new concept for the direct conversion of chemical to electrical energy. A nanowire with large axial thermal diffusivity can accelerate a self-propagating reaction wave using a fuel coated along its length. The reaction wave drives electrical carriers in a thermopower wave, creating a high-power pulse of as much as 7 kW/kg in experiments using carbon nanotubes. We review nanomaterials designed to overcome limitations of thermoelectricity and explore the emerging scientific and practical outlook for devices using thermopower waves
Correlating densities of centrality and activities in cities : the cases of Bologna (IT) and Barcelona (ES)
This paper examines the relationship between street centrality and densities of commercial and service activities in cities. The aim is to verify whether a correlation exists and whether some 'secondary' activities, i.e. those scarcely specialized oriented to the general public and ordinary daily life, are more linked to street centrality than others. The metropolitan area of Barcelona (Spain) is investigated, and results are compared with those found in a previous work on the city of Bologna (Italy). Street centrality is calibrated in a multiple centrality assessment (MCA) model composed of multiple measures such as closeness, betweenness and straightness. Kernel density estimation (KDE) is used to transform data sets of centrality and activities to one scale unit for correlation analysis between them. Results indicate that retail and service activities in both Bologna and Barcelona tend to concentrate in areas with better centralities, and that secondary activities exhibit a higher correlation
Exciton binding energies in carbon nanotubes from two-photon photoluminescence
One- and two-photon luminescence excitation spectroscopy showed a series of
distinct excitonic states in single-walled carbon nanotubes. The energy
splitting between one- and two-photon-active exciton states of different
wavefunction symmetry is the fingerprint of excitonic interactions in carbon
nanotubes. We determine exciton binding energies of 0.3-0.4 eV for different
nanotubes with diameters between 0.7 and 0.9 nm. Our results, which are
supported by ab-initio calculations of the linear and non-linear optical
spectra, prove that the elementary optical excitations of carbon nanotubes are
strongly Coulomb-correlated, quasi-one dimensionally confined electron-hole
pairs, stable even at room temperature. This alters our microscopic
understanding of both the electronic structure and the Coulomb interactions in
carbon nanotubes, and has direct impact on the optical and transport properties
of novel nanotube devices.Comment: 5 pages, 4 figure
Ultrafast Optical Spectroscopy of Micelle-Suspended Single-Walled Carbon Nanotubes
We present results of wavelength-dependent ultrafast pump-probe experiments
on micelle-suspended single-walled carbon nanotubes. The linear absorption and
photoluminescence spectra of the samples show a number of chirality-dependent
peaks, and consequently, the pump-probe results sensitively depend on the
wavelength. In the wavelength range corresponding to the second van Hove
singularities (VHSs), we observe sub-picosecond decays, as has been seen in
previous pump-probe studies. We ascribe these ultrafast decays to intraband
carrier relaxation. On the other hand, in the wavelength range corresponding to
the first VHSs, we observe two distinct regimes in ultrafast carrier
relaxation: fast (0.3-1.2 ps) and slow (5-20 ps). The slow component, which has
not been observed previously, is resonantly enhanced whenever the pump photon
energy resonates with an interband absorption peak, and we attribute it to
radiative carrier recombination. Finally, the slow component is dependent on
the pH of the solution, which suggests an important role played by H ions
surrounding the nanotubes.Comment: 6 pages, 8 figures, changed title, revised, to be published in
Applied Physics
In Vivo Delivery of Nitric Oxide-Sensing, Single-Walled Carbon Nanotubes
Detection of nitric oxide (NO) in vivo by single-walled carbon nanotubes (SWNT) is based on the fluorescent properties of SWNT and the ability of NO to quench the fluorescence signal. Alterations of the signal can be utilized to detect a small molecule in vivo that has not previously been possible by other assay techniques. The protocols described here explain the techniques used to prepare NO-detecting SWNTs and to administer them to mice by both intravenous and subcutaneous routes. These techniques can also be utilized with other SWNT sensors as well as non-SWNT sensorNational Institutes of Health (T32 Training Grant in Environmental Toxicology ES007020
Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer
Interaction of single-walled carbon nanotubes with electron donor and
acceptor molecules causes significant changes in the electronic and Raman
spectra, the relative proportion of the metallic species increasing on electron
donation through molecular charge transfer, as also verified by electrical
resistivity measurements.Comment: 15 pages, 5 figurre
ZnO based thermopower wave sources
Exothermic chemical reactions of nitrocellulose are coupled onto thermoelectric zinc oxide (ZnO) layers to generate self-propagating thermopower waves resulting in highly oscillatory voltage output of the order of 500 mV. The peak specific power obtained from ZnO based sources is approximately 0.5 kW kg-1
Chemical reactivity imprint lithography on graphene: Controlling the substrate influence on electron transfer reactions
The chemical functionalization of graphene enables control over electronic
properties and sensor recognition sites. However, its study is confounded by an
unusually strong influence of the underlying substrate. In this paper, we show
a stark difference in the rate of electron transfer chemistry with aryl
diazonium salts on monolayer graphene supported on a broad range of substrates.
Reactions proceed rapidly when graphene is on SiO_2 and Al_2O_3 (sapphire), but
negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces. The
effect is contrary to expectations based on doping levels and can instead be
described using a reactivity model accounting for substrate-induced
electron-hole puddles in graphene. Raman spectroscopic mapping is used to
characterize the effect of the substrates on graphene. Reactivity imprint
lithography (RIL) is demonstrated as a technique for spatially patterning
chemical groups on graphene by patterning the underlying substrate, and is
applied to the covalent tethering of proteins on graphene.Comment: 25 pages, 6 figure
- …
