1,704 research outputs found

    Probing anomalous relaxation by coherent multidimensional optical spectroscopy

    Full text link
    We propose to study the origin of algebraic decay of two-point correlation functions observed in glasses, proteins, and quantum dots by their nonlinear response to sequences of ultrafast laser pulses. Power-law spectral singularities and temporal relaxation in two-dimensional correlation spectroscopy (2DCS) signals are predicted for a continuous time random walk model of stochastic spectral jumps in a two level system with a power-law distribution of waiting times ψ(t)∼t−α−1\psi (t)\sim t^{-\alpha -1}. Spectroscopic signatures of stationary ensembles for 1<α<21<\alpha <2 and aging effects in nonstationary ensembles with 0<α<10<\alpha <1 are identified

    Non-adiabatic dynamics of molecules in optical cavities

    Full text link
    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules

    Cascading and Local-Field Effects in Non-Linear Optics Revisited; A Quantum-Field Picture Based on Exchange of Photons

    Full text link
    The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of NN non-interacting molecules is additive and scales as NN. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N2N^2

    Causal vs. Noncausal Description of Nonlinear Wave Mixing; Resolving the Damping-Sign Controversy

    Full text link
    Frequency-domain nonlinear wave mixing processes may be described either using response functions whereby the signal is generated after all interactions with the incoming fields, or in terms of scattering amplitudes where all fields are treated symetrically with no specific time ordering. Closed Green's function expressions derived for the two types of signals have different analytical properties. The recent controversy regarding the sign of radiative damping in the linear (Kramers Heisenberg) formula is put in a broader context

    Multidimensional spectroscopy with a single broadband phase-shaped laser pulse

    Full text link
    We calculate the frequency-dispersed nonlinear transmission signal of a phase-shaped visible pulse to fourth order in the field. Two phase profiles, a phase-step and phase-pulse, are considered. Two dimensional signals obtained by varying the detected frequency and phase parameters are presented for a three electronic band model system. We demonstrate how two-photon and stimulated Raman resonances can be manipulated by the phase profile and sign, and selected quantum pathways can be suppressed.Comment: 26 pages, 15 figure

    Fabrication of Atomically Precise Nanopores in Hexagonal Boron Nitride

    Get PDF
    We demonstrate the fabrication of individual nanopores in hexagonal boron nitride (hBN) with atomically precise control of the pore size. Previous methods of pore production in other 2D materials create pores of irregular geometry with imprecise diameters. By taking advantage of the preferential growth of boron vacancies in hBN under electron beam irradiation, we are able to observe the pore growth via transmission electron microscopy, and terminate the process when the pore has reached its desired size. Careful control of beam conditions allows us to nucleate and grow individual triangular and hexagonal pores with diameters ranging from subnanometer to 6nm over a large area of suspended hBN using a conventional TEM. These nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation. Furthermore, the chemical edge-groups along the hBN pores can be made entirely nitrogen terminated or faceted with boron-terminated edges, opening avenues for tailored functionalization and extending the applications of these hBN nanopores.Comment: 5 pages, 6 figure

    Interference effects in the counting statistics of electron transfers through a double quantum dot

    Get PDF
    We investigate the effect of quantum interferences and Coulomb interaction on the counting statistics of electrons crossing a double quantum dot in a parallel geometry using a generating function technique based on a quantum master equation approach. The skewness and the average residence time of electrons in the dots are shown to be the quantities most sensitive to interferences and Coulomb coupling. The joint probabilities of consecutive electron transfer processes show characteristic temporal oscillations due to interference. The steady-state fluctuation theorem which predicts a universal connection between the number of forward and backward transfer events is shown to hold even in the presence of Coulomb coupling and interference.Comment: 11 pages, 12 figure

    Many-body Green's function approach to attosecond nonlinear X-ray spectroscopy

    Full text link
    Closed expressions are derived for resonant multidimensional X-ray spectroscopy using the quasiparticle nonlinear exciton representation of optical response. This formalism is applied to predict coherent four wave mixing signals which probe single and two core-hole states. Nonlinear X-ray signals are compactly expressed in terms of one- and two- particle Green's functions which can be obtained from the solution of Hedin-like equations at the GWGW level.Comment: 10 pages and 3 figures (To appear in Physical Review B

    Implementing Activity Structures Process Modeling On Top Of The MARVEL Environment Kernel

    Get PDF
    Our goal was to implement the activity structures model defined by Software Design & Analysis on top of the MARVEL environment kernel. This involved further design of the activity structures process definition language and enaction model as well as translation and run-time support in terms of facilities provided by MARVEL. The result is an elegant declarative control language for multi-user software processes, with data and activities defined as classes and rules in the previously existing MARVEL Strategy Language. Semantics-based concurrency control is provided by a combination of the MARVEL kernel‘s lock and transaction managers and the send/receive synchronization primitives of the activity structures model

    Blue-Light-Emitting Color Centers in High-Quality Hexagonal Boron Nitride

    Get PDF
    Light emitters in wide band gap semiconductors are of great fundamental interest and have potential as optically addressable qubits. Here we describe the discovery of a new color center in high-quality hexagonal boron nitride (h-BN) with a sharp emission line at 435 nm. The emitters are activated and deactivated by electron beam irradiation and have spectral and temporal characteristics consistent with atomic color centers weakly coupled to lattice vibrations. The emitters are conspicuously absent from commercially available h-BN and are only present in ultra-high-quality h-BN grown using a high-pressure, high-temperature Ba-B-N flux/solvent, suggesting that these emitters originate from impurities or related defects specific to this unique synthetic route. Our results imply that the light emission is activated and deactivated by electron beam manipulation of the charge state of an impurity-defect complex
    • …
    corecore