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Interference effects in the counting statistics of electron transfers through a double quantum dot
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We investigate effects of quantum interferences and Coulomb interaction on the counting statistics of
electrons crossing a double quantum dot in a parallel geometry by using a generating function technique based
on a quantum master equation approach. The skewness and the average residence time of electrons in the dots
are shown to be the quantities most sensitive to interferences and Coulomb coupling. The joint probabilities of
consecutive electron transfer processes show characteristic temporal oscillations due to interference. The
steady-state fluctuation theorem that predicts a universal relation between the number of forward and backward
transfer events is shown to hold even in the presence of the Coulomb coupling and interference.
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I. INTRODUCTION

Fast and sensitive charge detectors and highly stable cur-
rent bias sources have made it possible to measure individual
electrons crossing arrays of tunnel junctions' or quantum
dots>* (QDs). Directional forward and reverse counting
through two quantum dots in a series has been reported.’
Spurred by this experimental progress, electron counting sta-
tistics (ECS) in nanosystems has attracted recent theoretical
interest both in the noninteracting®'® and the Coulomb
blockade regimes.!”!® It has been shown that strong Cou-
lomb interactions suppress large current fluctuations.'’

Double quantum dot (DQD) systems in parallel
geometry!®?? and single multilevel quantum dots>>** can
display interference effects due to the multiple paths that
electrons take to cross the junction when Coulomb interac-
tion is present. These effects on the average electric current
and level population'®~2* do not require a magnetic field as in
double quantum dot Aharonov—Bohm interferometers.>>=% A
recent study of interference effects on the electron transfer
statistics showed that they can induce super-Poisson shot
noise in the Coulomb blockade regime and the high bias
limit.'"® Using the terminology of Ref. 18, we denote the
couplings between populations and coherences in the many-
body eigenbasis as interferences.

In this paper, we extend full counting statistics to arbitrary
Coulomb coupling in a DQD junction by employing a quan-
tum master equation approach. We find that the third moment
and the average electron residence time in the system pro-
vide useful indicators for interference effects on the ECS. We
also introduce joint elementary probabilities to electron
transport, which can be obtained from a time-series analysis
of single transfer events. These probabilities reveal temporal
oscillations induced by interferences. Their amplitude is am-
plified by the Coulomb coupling and the frequency is deter-
mined by the energy detuning between the orbitals of the
dots. This method can reveal detunings much smaller than
k,T. The employed elementary probabilities are equivalent to
waiting time distributions recently investigated in single
electron transport’! and electron transport through single
molecules.*

ECS experiments have been recently proposed® as good
candidates to test the validity in the quantum domain of far-
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from-equilibrium fluctuation relations, known as fluctuation
theorems (FTs), which have raised attention in classical
systems.’>37 In Ref. 6, noninteracting electrons were consid-
ered and interferences were absent. We demonstrate in this
paper that the FT still holds in the presence of interferences
and Coulomb repulsion.

Counting statistics in systems with interferences can be
experimentally realized by connecting a DQD to two leads.
The transitions between states can be measured by employ-
ing a quantum point contact.>* As a reference point for the
DQD junction, we also calculate the corresponding values
for a QD with a single orbital where interferences are not
possible.

The paper is organized as follows: We present the DQD
and QD models in Secs. I A and I B, respectively. Equations
of motion (EOMs) for both models are derived in Sec. II. We
then introduce the generating function (GF) in Sec. IIL. In
Sec. V, we derive elementary probabilities for different elec-
tron detector configurations. The numerical results are pre-
sented in Sec. VI, and we summarize and conclude in Sec.
VIIL

A. Model A: Double quantum dot

Model A consists of a DQD connected in parallel to two
leads. Each QD contains a single spin orbital that is con-
nected to the leads, as shown in Fig. 1. Experimentally, it
would correspond to spin polarized leads in an infinite mag-
netic field where only one spin state is accessible by elec-
tronic excitations. This spinless DQD model has been used to
study the effect of interferences on average currents
without?®2? and with>-?73% an additional Aharonov—Bohm
phase.

The Hamiltonian

H=HS+HR+HSR (1)

represents the system Hy, the lead Hp, and their coupling
term Hgg. We label the two dots with index s=1,2. In second
quantization, the local-basis Hamiltonian of the system reads

©2008 The American Physical Society
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FIG. 1. Model A: double quantum dot in junction. Each quan-
tum dot has a single spin orbital with energy E,, which is connected
to a left and right leads. The left and right coupling elements are
equal and also T',=T,,; only the Fermi energies of the left and right
leads are different, thus defining a bias voltage V=Ep ;—Ef,. U is
the Coulomb interaction parameter between the two dots.

2
Hg= X EVIW + UVIW Wiw,. 2)

s=1

Here, U is the Coulomb coupling strength. The environment
consists of two independent leads in thermal equilibrium. For
each lead, the Hamiltonian is given by

HR = E wq\ll;q,q’ (3)
q

where \I’Z and W, create and annihilate an electron in lead
mode |g) with energy w,. To keep the notation simple, we
will only refer to the left lead in further derivations. The right
lead will be added to the final expressions. Since the leads
are in thermal equilibrium, their occupation numbers are de-
termined by the Fermi—Dirac statistics,

<\I,;\Irq’>R=nF(wq_EF)5qq’a (4)

where np(w)=1/(e#+1) is the Fermi function, 8=1/kT,
and Ef is the Fermi energy. We denote the trace over the lead
degrees of freedom by (-)g=trg{-pg}, Where py is the density
operator of the lead. The coupling of the lead with the system
can be written as

Hop=2 (T, WV, + T, Vi), (5)
5q
Here, T, is the coupling strength between lead mode g and
the sth QD. We assume weak system-lead coupling and no
direct overlap (tunneling) between the wave functions of the
left and right leads.

B. Model B: Single quantum dot

The second model, which is shown in Fig. 2, consists of a
QD with a single orbital that can accommodate two electrons
with opposite spins coupled to two leads. In analogy to
model A, the total Hamiltonian can be written as H=Hg
+Hp+Hgp. The system part is given by

HSZZEIU'\I,TU\III(T-*— UW;T\P]TWTl\PIL (6)

Here, the spin is denoted by o=1, |. The Hamiltonian of the
left lead reads
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FIG. 2. Model B: a single orbital QD with energies E|; and E,|
for the spin-up and spin-down states. The coupled leads have Fermi
energies Ep; and Ep,. U is the Coulomb coupling parameter. The
left and right coupling elements are equal.

Hg=2 o,V ¥ (7)

qo 40"
q

Electrons with different spins in lead mode |¢) have the same
mode energy w,. The coupling term between the system and
the left lead is given by

Hyp=2 (V, Wi, W, + Vo, WiW, ). (8)
q

Here, V,, is the coupling strength between lead mode ¢ and
spin orbital o. Even though both models A and B can accom-
modate two electrons, there is a qualitative difference be-
tween the two. In model B, the lead operators have spin
indices so that

<\I,qu—qlq’(r'>R = nF(wq - EF) 6qq’ 5(r(r’ . (9)

The additional &, in Eq. (9) compared to Eq. (4) will be
critical, as will be shown later on.

II. EQUATIONS OF MOTION FOR THE REDUCED
SYSTEM DENSITY MATRIX

Master equations have been widely used to simulate elec-
tron transport through quantum systems.*-43 By using a nu-
merical decomposition of the lead spectral density,*** a
non-Markovian master equation for electron transport was
derived for noninteracting®®*” and interacting®® electrons to
the second order in Hgp. Higher order coupling elements can
be derived via path-integral calculus.? The approach is valid
for the arbitrary Coulomb coupling strength, temperature,
and bias. Master equations can be used to calculate the GF of
the charge transfer statistics.®!7-18

The total density operator is denoted as p, and pg=trg{p}
and pgp=tr¢{p} denote the system and the lead components of
p, respectively. We use the full Fock space as a basis for the
system part and hereafter we will refer to pg simply as den-
sity matrix. The quantum master equation to the second-
order perturbation theory in Hgy reads

195315-2



INTERFERENCE EFFECTS IN THE COUNTING...

ps(t) == iLgps(1)

t
- tfR{ ﬁmf dt/GS+R(t,t/)‘CSRG;(t’t,)p([)} .
1,

0

(10)

Equation (10) is derived in Appendix A. The Liouville op-
erators are defined via Lgz-=[Hgg,-] and Lg-=[Hy,-], and
the propagators are Gg,g(z,t')=exp[—i(Lg+ Lg)(r—1")] and
Gy(t,t")=exp[—iLg(t—1")]. We also set Zi=1. In order to
propagate Eq. (10), we derive the EOM for its dissipative
part [second term in Eq. (10)]. This will be done in Secs. IT A
and II B.

A. Quantum master equation for model A

By applying the system-lead coupling term [Eq. (5)] of
model A to Eq. (10), one gets*64°

ps(t) == i[Hs,ps(0)]- {E [ET O ()ps(n) + s P (1))

s

+ S W sV — o)W+ H} (1)
The auxiliary operators in Eq. (11) are given by

13
Y=, J dt' CH - 1) Gs(t, )y, (12)
s! T

YO =, f di'(C e =) Gyt )W, (13)

The correlation functions CS,)(Z) are discussed in more detail
in Appendix B. Because we assume that the coupling of the
lead to the two dots is symmetric, 7,;=T,,, the correlation
functions [Egs. (B3) and (B4)] that correspond the cross cou-
pling terms, s # s’, can be written as Cw (t—t’)=C§f)(t—t’).
Setting C,,(¢)=0 for s # s’ would correspond to the rotating
wave approximation (RWA).38

Liouville space allows a compact superoperator notation.
We define the following Liouville space superoperators:
LA=[H;,A], YPRPA=AY, TWA=WA, PIRA=APT and
P A=WTA. A is an arbitrary operator in the space of the
system. We use R and L to denote the left and right super-
operators and / and r as indices for the left and right leads.
Equation (11) finally reads

ps(t) = Wa(0)ps(1), (14)
where W,(2) is
W) = —il - T1) + 3L (1) + 3L (). (15)

The dissipative term is separated into a diagonal contribu-
tion,

(1) = 2 WIEWHD () + wIPWER (1) + He., (16)

which leaves the number of electrons in the system un-
changed and two off-diagonal parts,
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3L = X wIPwER () 4 wRgTED () (17)

3L = X wIRWHD () 4wy iR () (18)

increase or decrease the number of electrons, respectively.
W,(2) is a 16 X 16 matrix in the Liouville space. In the terms
for the rlght lead 117(z), 2’(¢) and 3’ (¢) can be derived by
replacing C ,) in Egs. (12) and (13) with the correlation
functions of the right lead and have to be added to Eq. (15).

In Appendix B, we discuss the spectral decomposition
of the correlation functions  into  the  form
C(mt,)(t)=22":+1’”’a,(f)67£7)’. Bidirectional counting requires
relatively small bias voltages in order to have significant
backward transfer rates. The Fermi function is expanded into
the Matsubara frequencies, iy,(f) for k=m+1,...,m’, and
small bias voltages can be used in our calculations. A nu-
merically efficient way for calculating Egs. (12) and (13) is
by propagating the EOM*0

(9 =+ + + =+
o T 0= A0 - H 0]+ 2 a7y

(19)

Summation over the spectral decomposition given by Eq.
(B10) results in an explicit expressions for the many-body
auxiliary \If( (=27 & \If (t) operators.  Equations
(14)—(19) 51mu1taneous1y propagated in time form a closed
set for calculating the reduced density operator pg(f). An
adiabatic switching of the coupling is not required in this
method. We are interested in electron counting statistics at
the steady state, which we reach by numerically propagating
py=ps(t—»), M=II(r—), %, =3 (1—»), and 2_=3_(¢
—0),

The RWA as applied in Ref. 38 decouples the coherence
and population part of the system density matrix in the Liou-
ville space eliminating all interferences. For model A, the
RWA applied to Eq. (14) would reduce it to a Pauli rate
equation in the eigenbasis of the system. This formal cancel-
lation can be realized as is illustrated by model B, a single
QD. Model B also allows a maximum number of two elec-
trons, but interferences are absent due to the different spin
states of the electrons. In Sec. IIIB, we present the Pauli rate
equation for model B without invoking the RWA.

B. Pauli rate equation for model B

Inserting the system-lead coupling term [Eq. (6)] of
model B into Eq. (8), we can write

ps(t) = = i[H,ps()]- {2 (W (1) ps(0)

+ W] ps() W) ()]
+ S (W Dps0) ], - ps O], + H.c.} |

(20)
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The auxiliary operators in Eq. (20) are given by

t
W) = f dt' CUt -GtV Wy, (21)
I

t
v = f di'[CENt =)' G(1.1)V 0. (22)
)

The correlation functions Cf,?(t—t’) are given in Egs. (B1)
and (B2). The master equation can be recast in the compact
Liouville space form,

ps(t) = Wy(1)ps(2), (23)
where
Wy() = — il =11 + 3L (1) + 3L0). (24)
The diagonal part is given by

(1) = >, UYWL () + wTRWR )y He., (25)
and the off-diagonal parts are

lo

S0 = 2PV + wRWICP0),  (26)

310 = 2 wiRWED (@) 4 wEIERG . (27)

Because C'=C{;'=0 (see Appendix B), the spin quantum
number causes a separation of coherence and population part
in the density operator. The population part of Eq. (23) sat-
isfies the Pauli rate equation,

Ps(f) =WpPs(t). (28)

Here, P denotes the population of the states and Wp is the
Pauli rate matrix.

III. GENERATING FUNCTION

The transfer probability of k=(k; incoming,k, outgoing)
electrons in the time interval -7, through the left lead is
denoted as P(k ;). We define the generating function G(\ ;1)
by

G(iN:t) =D, " P(k:1). (29)
k

The probability distribution is obtained by using P(k;?)
=5-J3TG(iN e M,
We will calculate the GF by tracing the generating
operator®!8 (GO) g(\ ;1) over the system degrees of freedom,
G(N\;1) =tr{g(N;0)}. (30)
Based on the master equation [Eq. (23)], g(\ ;1) satisfies the
EOM,
g(\s1) = WN)g(Nst). 31)

Counting starts after the system has reached the steady state.
Thus, the initial condition of the GO is given by the steady
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state of the system density matrix g(\;7=0)=pg. The propa-
gator W(N) of the GO is

W) =—il —TI'=TI" + M3 + M3 437 437, (32)

We shall consider the statistics of charge transfers between
the left lead and the system. A: =(\;,\,) controls the specific
statistics obtained by propagating Eq. (31). We investigate
three cases. Setting N,:=(A;=\,\,=0) gives the counting
statistics of the incoming electrons, A_: =(\;=0,\,=\) the
outgoing, and N,:=(\;=A,\,=-\) the net process. The
corresponding probabilities are denoted by P”(k:r), with
n=+,i,n, respectively.

IV. CUMULANTS OF THE TRANSFER DISTRIBUTIONS

We shall calculate the first C,(z), the second C,(z), and the
third C5(f) cumulant of P (k;r) with respect to k. C;(t)

=k/t=3,kP(k;t)/t is related to the average current I(7)
=eC,(t). The second cumulant defined by C,(r)=(k*—k?)/1 is

commonly represented by the Fano factor F (t):gfx). The

third cumulant C5(r)=(k—k)?/t measures the skewness of the
probability distribution P(k;t) with respect to k. For a small
bias, the current is small and the electrons transferring into
the system are uncorrelated. This leads to Poisson counting
statistics wherein the Fano factor equals F=1. If F<1, the
process is sub-Poissonian, while F>1 indicates super-
Poissonian statistics.
The time-dependent cumulants can be calculated from

C7(1) = KK i1)|smo, (33)
where K(\ ;) is obtained from the GF,

1
K(N,;t) =~ ;ln[G()\”;t)]. (34)

We make use of the fact that K(X;7) has a well-defined long
time limit and calculate the asymptotic values® for the
steady-state current,

Jd
C”= —limKN\,0| (35)
)\[4»90 A=0
and the zero-frequency power spectrum,
&
C"= —lim K(\, ;1) (36)
(?)\ t—o )\:0

The asymptotic value of the skewness is defined in the same
fashion,

3

&
C{"= —lim K(\,;1) (37)
0)\ 11—

A=0

The long time limit of K()\n;t) can be calculated from the
dominant eigenvalue*® €;(\,) of the propagator W(X,) given
by Eq. (32). Then, K(\,)=lim,_... K(\,;t)=¢€;(X,). Note that
€] (AW: 0) =0.

V. PROBABILITIES OF ELEMENTARY EVENTS

We introduce elementary probabilities to characterize
consecutive electron transfer events my,m, at times t, t,. m
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characterizes the side of the process (I,r) and if the electron
is transferred in (+) or out (=) of the QD. The elementary
probability is given by>*!

P(ty,t)) = <Emzsz2,t12mlszl,ro>~ (38)

Equation (38) is the joint probability of detecting specified
electron transfers at times #; and 7, with no transfers occur-
ring in the time intervals 7,7, and ¢,,¢;. We denote the trace
over the system degrees of freedom by ()=tre{-ps(t)}. S, ;.
is the propagator of the system in the absence of transfer

events at the leads within the time interval 1,1,

Sty = exp[(—il - II'=1I")(t; - 1))]. (39)
We shall consider three cases.

(i) An electron is detected when it enters the junction
through the left lead at time 7;=0 and leaves the junction
through the right lead at time #. The electron transfer opera-
tors are Ell and X7, respectively, and we denote this transfer
pathway by [—r. The joint elementary probability is then
given by

Plﬂr(t’ tO) = <21St,tozi—>' (40)

(ii) The reverse process r— 1, which we write as

Prﬂl(t’to) = <21—Sr,toz-r+>' (41)

(iii) Transfer from the left lead into the system and back
into the left lead denoted by [— [ can be written as

Pri(t,19) = (LS, , =), (42)

Quantities (40)—(42) can be measured as follows: One has
to detect single directionally resolved electron transfers be-
tween the leads and the system and record a sufficiently long
time series of transfer events. Then, a histogram of the num-
ber of occurrences of a specific consecutive transfer event,
such as /—r, as a function of increasing time intervals ¢
—1, can be generated. The histogram has to be normalized by
the total number of events 3" — 32 in the time series.

The total conditional probability anﬁmz to have an 3™
event if the last event was a 21 event irrespective of the
time interval between m, and m; can be calculated by inte-

grating the time-dependent conditional probability
PG, (Tl = (3, Sy (sm),
Pomy= [ ansms zmism). @)
0

Other interesting quantities can be calculated from Eqgs.
(40)—(42). For example, the residence time of electrons in the
system subject to a specific transfer process m; —m, is given
by
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f dTT(EWtzSTJOEml)
lres = ’Om . (44)
| s,z

0

We propose another interesting setup by counting electrons
only at the left lead regardless of electron transfers occurring
at the right lead. Thus, propagator (39) is modified to

§,i,t/ =exp[(—iL —TI'-TI"+ 3, +30)(1;—-1)].  (45)

The conditional probability of an electron entering the sys-
tem at time #, through the left lead and the next electron
entering at time ¢ from the left lead can be written as

Pil( t|t0) = <Ei—§ltozi>/<2i—> (46)

We denote this transfer series by /, /. In the time interval #-1,,
electron transfers take place only at the right lead. For an
uncorrelated electron transfer, probability distribution (46) is
Poissonian and can be written as>”

Pz;)issonian( l‘|t0) — €_C1t<2i->' (47)

VI. NUMERICAL SIMULATIONS

The master equation for model A [Eq. (14)] and the EOM
of the auxiliary creation operator [Eq. (19)] form a system of
equations of motion, and we simultaneously propagate them
into steady state by using the Runge—Kutta method. At
steady state, the memory of the non-Markovian master equa-
tion vanishes and Eq. (14) corresponds to its Markovian
counterpart and the electron transfer operators [Egs.
(16)—(18)] become time independent. By using the obtained
transfer operators and steady-state density matrix, we then
propagate the EOM of generating operator (31) to a finite
binning time ¢ for each step of the discretized counting field
N to derive the time-dependent cumulants. Alternatively, we
use an eigenvalue decomposition of the steady-state propa-
gator of Eq. (32) in order to calculate the asymptotic cumu-
lants. The same approach is used for model B based on Eq.
(23) and its dependencies.

We shall expand all system operators in the many-body
eigenbasis of the system. For model A, we use the transfor-
mation

W= ol |m)m']. (48)

mm'

The many-body basis is spanned by four states: [0)=|00),
[1)=[01), [2)=[10), and [3)=[11). The coefficients of the
transformation ar;;,f, between the orbital basis and the many-
body basis can be derived from the fermion anticommutator
relations. Here, the nonzero coefficients for the creation op-
erators are a(zgzl, agll)zl, a(l%))zl, and a(322)=—1. Thus, we
get WI=[10)(00]+|11)(01| and ¥j=]01)(00|-|11)10|. The

annihilation operators can be derived by replacing a,(;fn, with
(5)

a, .- For model B, one has to replace s=1 with o=7 and
s=2 with o=]. We can write Egs. (2) and (6) as

195315-5
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e=E+E+U
=1 &= E2:1001 EF=1
— e=E=0999 —
e 0

FIG. 3. Level scheme in many-body eigenbasis for model A. For
model B, E; and E, have to be replaced by E;; and E|.

3
Hg= 2 €,m)m|. (49)

m=0

Here, €, is the energy of state |m). The energy scheme we
used for models A and B is shown in Fig. 3. All energies are
scaled with respect to the equilibrium chemical potential of
the leads Er=1. The fixed orbital energies for model A are
€=E£,=0.999 and €=E,=1.001 and for model B €=E};
=0.999 and €=E,;=1.001. Thus, the double occupancy
state has an energy of es=E;+E,+U=2.0+U. The ground
state is set to zero, €,=0. The bias voltage is symmetrically
applied to the system by using Ep;=Ep+V/2 and Ep,=Ef
—V/2. To study temperature fluctuations of electron transfer
as a function of U, we set 7=0.002 to be in a temperature
range of BV=U. In Eq. (B6), we restrict the spectrum to a
single Lorentzian centered at {};=Ey. We also chose a rela-
tively large bandwidth parameter I';=1 (wide-band limit).
We set p;=2X10"*in Eq. (B6) (p; ~Z,|V,|*=2|T,|>) as a
reasonable small value considering the weak coupling re-
quired in order to guarantee physical results within second-
order perturbation theory.

A. Bidirectional transfer probability

In Fig. 4, we show the probability P™(k;r) of the net
number k=k;—k, of electron transfers between the left lead
and the system at the steady state. The binning time is fixed
to r=200. The left panel depicts model A and the right panel
model B. The distributions for different Coulomb coupling
strengths U=0, U=2X 1073, and U=8 X 10~* are fitted with
a Gaussian P(k)=%exp(—v—2v(k—xc)2). The fit parameters are
given in the graph. A small bias of V=4 X 10~* allows elec-
tron transfers against the bias. As discussed for
noninteracting® and strongly coupled'’ electrons, the Gauss-
ian provides a good approximation for P")(k;r). This is
mainly due to small nonequilibrium constraints. For a high
bias, the deviations will be more significant. Interference ef-
fects are enhanced by the Coulomb interaction. This can be
seen by comparing the results for models A and B in Fig. 4,
wherein interferences are present and absent, respectively.
For U=0.0, the probability distributions for both models are
the same. With increasing U, the fitted curve is shifted and
broaden in the presence of interferences.

B. Fluctuation theorem

Figure 5 shows K(z,\,), which is given in Eq. (34), for
the net process as a function of N for different Coulomb
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Model A: Model B:
= U=0.0, w=13.4, x =17.2 = U=00, w=13.4, x =17.2
o U=2*10" w=12.8,x=11.9 ® U=2*10", w=10.0, x =9.6
A4 U=8*10", w=14.1,x =131 , 4 U=8*10°, w=10.1,x =9.6

1 % !
10 0 10 20 30 40 50 10 O 10 20 30 40 50
K K

FIG. 4. (Color online) Electron transfer probability P"(k,t) for
different Coulomb coupling strengths U as a function of the net
number of transferred electrons k. The left panel depicts model A,
while the right panel depicts model B. The time is set to r=200. A
small bias is applied V=4 X 107*. w: =variance and x,: =position of
peak are the fit parameters of the Gaussian. In model B, the curves
for U=2X 1073 and U=8 X 1073 overlap.

coupling strengths. The x axis was rescaled by the fixed bias
of V=2X1073. To explore the role of interferences, we com-
pare models A and B. The left panel shows the asymptotic
cumulant generating function lim,_,., K(¢,\,,), which is com-
puted from the eigenvalues of W(N\,); the right panel shows
K(t,N\,) for the finite binning time #=10 that was calculated
by propagation of the EOM [Eq. (31)]. We observe that finite
Coulomb coupling, U=2X 1073, significantly changes the
cumulant GF K(z,\,). This indicates that the influence of
Coulomb blockade can be measured in the first cumulant,
which is the current. The effects due to the interference terms
are smaller and are observable for U #0. In this regime, a
discrepancy between models A and B can be observed for
N/ BV=0.5, which indicates that it is significant in the higher

t=infinity t=10
1.5%10° ‘ ] ‘ \ 1.5%10°
— U=0.0, Model A&B
. U=0.008, Model A | i
F|= = U=0.008, Model B
R 1.0x10°
1.0x10° -
=< .
t: r ..' -~ \’.’
: AN 5.0x10"
7 N
. W, N,
sox10* ;7 v\
7 Y
7 \
Ll \ 0.0
I \\
L | L
005 05 1
MBV

FIG. 5. (Color online) Cumulant generating function K(z,\,) of
the net process as a function of N\ for different values of the Cou-
lomb repulsion U. The left panel shows results obtained for an
infinite binning time, lim,_,.. K(¢,\,), while the right panel for a
finite binning time of #=10. The x axis is rescaled by BV.
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FIG. 6. (Color online) First cumulant C; (top panel), Fano factor
C,/Cy (middle panel), and the normalized skewness Cs/C; (bottom
panel) as functions of Coulomb coupling U for infinite binning
time. A, refers to the incoming transfer, A_ to the outgoing transfer,
and A, to the net transfer of electrons between the left lead and the
system. The bias voltage is V=1X 1073,

cumulants. We find that at an infinite binning time, the sym-
metry K(£,N)=K(t,A—BV) holds in both models, as shown
in the left panel of Fig. 5. This symmetry is equivalent to the
fluctuation theorem, %_%:exp(ﬁVk), for t— 0. This relation
thus holds in systems with interferences and Coulomb inter-
action.

C. Cumulants of the transfer probability distribution

In the following, we discuss the effects of quantum inter-
ference and Coulomb coupling on first cumulant Cy, the
Fano factor F=C,/C,, and the normalized skewness C;/C,
for an infinite binning time. The upper panel of Fig. 6 depicts
the first cumulant through the left lead for three different
processes: N, (ingoing), A_ (outgoing), and \,, (net process).
The bias is V=1X1073. U introduces an energetic penalty
for double occupancy. This explains the current drop around
U=2X 1073 by the fact that the energy of the double occu-
pancy state increases with U. This reduces the occupancy of
the state and its contribution to the total average current. The
drop is smooth due to the finite temperature. Interesting ef-
fects can be observed at the intermediate coupling regime, so
is the drop of the net current accompanied with an increase
in the reverse current. The Fano factor and the normalized
skewness of the transfer in direction of the bias as well as the
net transfer show an increase following the decrease in cur-
rent due to increasing U. The corresponding values for the
reverse transfer show a weak response.

A comparison of model A to model B, which is shown in
Fig. 7, demonstrates the influence of interferences on the
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FIG. 7. (Color online) Comparison of first cumulant, Fano fac-
tor, and normalized skewness for the net-transfer statistics (N\,,) be-
tween models A and B for an infinite binning time. The bias is V
=1x1073.

net-transfer statistics (X\,,). The skewness is of particular in-
terest since it was found to be the most sensitive of the three
in systems with interference.'® The Fano factors of models A
and B diverge in Fig. 7 with increasing U, but their absolute
difference remains small. The skewness more clearly reveals
the presence of interferences than the Fano factor. The aver-
age current shows a negligible difference. The observability
of interferences requires a strong Coulomb coupling since
the differences between models A and B in the third cumu-
lants are significant when the double occupancy state is in-
accessible by electronic excitations.

D. Joint elementary probabilities

By using expressions (40)-(42), we calculated the joint
probabilities of directionally resolved consecutive electron
transfers. Figure 8 compares the joint probabilities
P,_,(t,t0), Pi_(t,19), and P,_(t,t,) for the two models and
a small bias of V=2X1073. In model B, we observe an al-
most exponential decay of the probability of an outgoing
electron transfer event at the left/left/right site following an
incoming electron transfer event at 7, at the right/left/left site.
A weak nonexponential slope indicates a weak correlation
between the transfer processes. The probabilities of the re-
verse processes r— [ decay faster than in the direction of the
bias [— r. Consequently, the /— [ process has an intermedi-
ate decay rate. Electron-electron coupling leads to a slower
decay in all three processes, which indicates that the prob-
ability of an electron to reside longer within the junction
increases with U. The probability has its maximum at 7,
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FIG. 8. (Color  online)  Elementary  probabilities

Py (t,t0)] P, /(t,t9)/ P,_,(t,t) for an electron entering the junc-
tion through the left/left/right lead at time #; and leaving through the
right/left/left lead at time #, respectively. The left side shows model
B, while the right side shows model A. The bias voltage is V=2
X 1073,

since the orbitals are in direct contact with both leads.

In model A, the exponential decay of the probability is
superimposed by an oscillation due to orbital interference.
The amplitude of the oscillation is increased by the Coulomb
interaction. We Fourier transformed the P,_,.(z,,) probabil-
ity of model A in order to analyze the dependency of the
frequency on the system parameters. The magnitude of
F(w)=%fﬁdte"“"P,ﬂ,(t,t():O) is shown in Fig. 9. From the
peaks, we can conclude that the frequency w,_,, of the oscil-

2.5x10°
—— AE=210"
30 -3
2.0x10° AE=410" |
~ =+ AE=610"
| = AB=810"
_1sx107f ‘= AE=1010"]
z 3
= :
Sl
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080 40 8.0 120
©(107)

FIG. 9. (Color online) Magnitude |F(w)| of the Fourier transfor-
mation of P;_ (t,1y) for model A. AE=E|—E, is the energy differ-
ence between orbits of the quantum dots. Coulomb coupling is set
to U=4X 1073, The bias voltage is V=2 X 1073.

PHYSICAL REVIEW B 77, 195315 (2008)

m->m,

FIG. 10. (Color online) Total conditional probabilities [Eq. (43)]
P;_,, and P,_, as a function of bias voltage for the different Cou-
lomb coupling strength U. Upper panel: model A; bottom panel:
model B.

lation in P,_,.(t,p=0) is determined by the detuning of the
orbitals of the two quantum dots w, ,,=E,—E,=€,—¢€,. We
could not find a dependence of w;_,, on U. The energy gap
between the double occupancy state and the single occu-
pancy states e;—¢€; (e3—¢€,) is 3 orders of magnitude larger
than the gap between the single occupancy states. We also
found that the amplitude of the oscillation decreases with
increasing detuning. Thus, oscillations due to the e;—€; (€3
—¢) energy gap, which would depend on U, have a high
frequency and a small amplitude invisible to our numerical
method. The time-series analysis of consecutive electron
transfer events seems to be highly sensitive to very small
energy differences when interferences are present. Note that
this method works for energy differences smaller than k7.
Here, €, — e, =k, T, which cannot be resolved by average cur-
rent measurements by scanning the voltage of the leads.
The upper panel of Fig. 10 depicts the total conditional
probability anﬁmz as a function of external bias voltage for

model A (bottom panel, model B). The two transfer pro-
cesses under consideration are /[—r and r—I[, and we use
U=0.0 and U=2X% 1073 for comparison. Since the probabil-
ity in Eq. (43) is conditional on the first transfer, the r— 1
and /—/ processes are equally likely. In the absence of an
external bias, P;_,, and P;_,, are equal and the electron trans-
fers are driven by the thermal fluctuations of the leads at
finite temperature. A splitting occurs when the voltage is
turned on. The deviations caused by the Coulomb coupling
vanish at high bias in both models.

Figure 11 uses the same parameters as Fig. 10, but the
observables are shown as functions of the Coulomb coupling
U at a fixed bias of V=2 X 1073, The upper panel depicts the
total conditional probabilities and the bottom panel as the
average residence times for models A and B. Increasing U
causes a dip of the /— r probabilities around U=2X 1073,
There are no qualitative differences between the probabilities
of the two models. U strongly affects the mean residence
time of the electrons, which is also sensitive to the presents
of orbital interferences. Thus, the residence time between the
electron entering and leaving the junction provides a useful
measure for the presence of Coulomb coupling and interfer-
ences.
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FIG. 11. (Color online) Upper panel: time-integrated conditional
joint probabilities [Eq. (43)] Pj_,, and P;_, versus Coulomb cou-
pling strength U. Bottom panel: the mean residence time #,, of an
electron in the system as a function of U for the different processes

and models A and B. The bias is V=1X 1073,

Figure 12 depicts the conditional joint probability
i(1tg) [Eq. (46)] for an electron to enter the junction
through the left lead at time 7, and next electron to enter at
time ¢ also through the left lead. The detector is only applied
to the left lead; transfers at the right lead are permitted at all
times. Models A and B are compared to different U. The
probabilities of the Poissonian two-electron transfers [Eq.
(47)] are shown for comparison. Similar to the configuration
with electron detectors at both leads (Fig. 8), longer tails are
observed in the probability distribution in time for larger U.
Consecutive electron transfers are strongly correlated at short
times leading to small probabilities for the next electron to
enter the junction after the first one has entered. At interme-
diate times, the probability is larger than the probability of
the Poissonian process. For long times, the transfer becomes
weakly correlated and the probabilities for models A and B
are close to a Poissonian distribution. The oscillations are
present due to orbital interference in model A only.

0.01 Poisson, U=0.0
kK - -—- Poisson, U=0.01
o = RPICRNG Model B, U=0.0
& 0005~/ T Model B, U=0.01|

Poisson, U=0.0

- ——- Poisson, U=0.01
Model A, U=0.0

----- Model A, U=0.01

e
S e i

0 2.0 4.0 6.0 8.0

FIG. 12. (Color online) Conditional probabilities P; ( t|to) for an
electron entering the junction through the left lead at time 7, and the
next electron enters at 7. Only transfers through the left lead are
detected. Electrons are allowed to leave and enter through the right
lead at all times. Models A and B are compared to different U. For
comparison, we also plot the corresponding Poissonian processes
proissonian( 4.y The bias voltage is V=2 X 1073

11 0)- ge is .
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VII. CONCLUSIONS

We have calculated the counting statistics in a model
junction and its variation with finite Coulomb coupling and
bias . The numerical results reveal several significant mea-
surable effects of the quantum interference in a DQD on the
electron transfer statistics.

The skewness provides an sensitive observable. We also
show that a measurement of the average residence time of
electrons is affected by quantum mechanical interference as
well as the Coulomb coupling between two parallel quantum
dots. The observed oscillations in the joint elementary prob-
abilities can be recovered by time-series analysis. Their am-
plitude and frequency are directly related to the Coulomb
coupling and the level detuning of the DQD, respectively.

Several extensions of the model could be of interest. De-
coherence effects can be included by coupling a dissipative
phonon bath to the sites. Including higher order coupling
elements beyond the second-order perturbation theory in the
GF could reveal additional insights into the dynamics of the
system-lead contact.
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APPENDIX A: DERIVATION OF THE QUANTUM
MASTER EQUATION

In this appendix, we present the derivation of the
Nakajima—Zwanzig operator identity>*> and utilize it to
couple the lead to the relevant system, which is the quantum
dots. We define a projection operator P, with P?>=P, which
acts on an arbitrary operator A defined in the Hilbert space of
the full system

PA =B tri{A}. (A1)

Here, B is an operator defined in the lead part only. Applying
the projection operator to the density operator of the full
system leads to

Pp(t) = pg trg{p(t)} = pr ® ps(t). (A2)
Thus, the EOM for the full system can be written as
p(1) =—iLp(t) = —iLPp(r) —iLQp(1), (A3)

which can be interpreted as the evolution of the projected
part Pp(r) plus the evolution of its orthogonal complement
Qp=(1-"P)p. Applying the projection operator to the Liou-
ville equation and to its orthogonal complement leads to

Pp(t)=—iPLPp(t) —iPLOp(1) (A4)
and

0p(1) == iQLPp(t) —iQLOp(1),

respectively. Integrating the differential equation of the or-
thogonal complement part [Eq. (A5)] and applying it to Eq.

(AS)
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(A4) results in the Nakajima—Zwanzig operator identity,’3->

Pp=—iPLPp(t) - iPLT expl— iJ dr(1- P)L]
X(1 —P)p(t0)+P£Jt dt’fexpl—if d(1 —P)E}

0]
X(1=P)LPp(t), (A6)
which is valid for arbitrary time-dependent Hamiltonians. 7
is the positive time-ordering operator. One can further sim-
plify by tracing over the lead degrees of freedom and em-
ploying the property of the projection operator trg{Pp(?)}
=ps(?). This gives

t

ps(t) == iLgps(t) — i trp{ Lsrpg} + f dr'K(t,t")ps(t') +In(t),

)

(A7)
where the Kernel K(z,t') reads
N t
K(t,t") = —trgy LsgT exp| — if dr(1-P)L
[/
X(1=P)(Lg+ Lsr)pr (A8)

and the initial value term is given by

In(z) :—itrR{LSfexpl—ift d(1 —P)E](l —P)p(to)}.

0

(A9)

In order to derive a practical method for solving Eq. (A7),
we utilize the second-order perturbation theory by assuming
that (1-P)Lgz=0 or Lgz= PLgg, which implies for the Ker-
nel K(z,t") that

omi(1=P)Lt _ y=i(1=P)( L LptLp)t o pmi(1=P)(Ls+Lp)t

(A10)

We can further simplify Eq. (A7) by making use of the fol-
lowing exact relations: Lzpr=0, PLgrpr=0, e 1-PE=p
+(1=P)e ™', and trp{LzPC}=0 for an arbitrary operator C.
Finally, neglecting the initial value term [Eq. (A9)] in the
evolution of the reduced density matrix results in the Liou-
ville equation with the system-lead coupling term in a time-
nonlocal (TNL) regime,

t

ps(t) =—iLgpg(t) - trR{ESRJ dr' G, g(t,1") Lsgp(t')}.
I

(A11)

We neglect the influence of dissipation during the propaga-
tion of the density operator by applying the substitution®
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p(t') = Gi(t,1")p(1) (A12)
to the TNL Kernel. This leads to the time-local (TL) descrip-
tion given by Eq. (10). For the given system, both the TNL
and the TL descriptions produce similar results in the weak
coupling regime.*’

APPENDIX B: NUMERICAL DECOMPOSITION OF THE
SPECTRAL DENSITY

In model B, the trace over the lead degrees of freedom in
the dissipation term of Eq. (10) can be recast in terms of
correlation functions of the form

CE:;’(t) =2 Vqtfv;r/<\quv’e_iHRt‘PZaeiHRtPﬁR, (B1)
q

CET_O)"(I) = E Vq(rvza-’<e_iHRt\I,j[(reiHth}q(r’pR>R' (Bz)
q

The properties of the trace lead to C%?:Cﬁ):O. While not
an approximation, the procedure mimics a rotating wave ap-
proximation in Eq. (23). The correlation functions in model
A used in Egs. (12) and (13) are given by

Ci;?(t) =2 quTZs’<‘Pqe_iHRt\P;eiHRtPR>R7 (B3)
q

CO) = 2T, T, (e W ek peye. (BA)
q

The coupling to the DQD is assumed to be symmetric, 7
=T . The cross coupling correlation functions are given by
Cii)(t—t’):cgf)(t—t’). The following derivations refer to
Egs. (B1) and (B2). The same procedures have to be applied
to Egs. (B3) and (B4) as well, but we will not present them
in detail. All of the external properties of the lead are de-
scribed by a single quantity, namely, the spectral density
Jr(w), which can be generated by a superposition of
weighted & functions,

Je(w) =2 7V, 8w-,). (BS)
q

We apply a numerical decomposition of the spectral density
to derive equations of motion,

m 1_%
Te(@) =2 py

—_— . (B6)
= (o= Qk)2 + Fi

With the complex roots of the Fermi function and of function
(B6), the theorem of residues applied to Egs. (B1) and (B2)
results in*0

CH(1) = 2 pililnp(= O + Ep)e %] - E’E Te())e v,
k=1 k

(B7)
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- - B YR ‘
(CEN(0) = 2 plilnp(Qf - Ep)e ] - EE Tr(vpe™,
k=1 A

(B3)

with o=1 and o=]|. We use the abbreviations ;= +iT";
and Q; =, —il"; and the Matsubara frequencies v} given by
v=i2mk+w/ g+ Ep. In general, one has to take an infinite num-
ber of the Matsubara frequencies into account, but it was
demonstrated that the summation can be truncated.**~*® From
Egs. (B7) and (B8), we can write the correlation functions as

PHYSICAL REVIEW B 77, 195315 (2008)

m+m !

. 4 ()
Cfr‘(,)(t)= > a,(c‘)eyk ! (B9)
k=1

The same decomposition can be derived for Cﬁsi,)(t),

m+m !

+ + ()
=3 ael.
k=1

(B10)
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