1,986 research outputs found

    Lianas Suppress Seedling Growth and Survival of 14 Tree Species in a Panamanian Tropical Forest

    Get PDF
    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well‐replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large‐scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 × 80 m plots (eight liana‐removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two‐yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana‐removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter tropical tree species diversity, relative abundance, or community composition

    Matrix models and N=2 gauge theory

    Full text link
    We describe how the ingredients and results of the Seiberg-Witten solution to N=2 supersymmetric U(N) gauge theory may be obtained from a matrix model.Comment: 6 pages, AMSLaTeX (ws-procs9x6.cls included). Presented at QTS3 (Cincinnati, Ohio, Sept. 10-14, 2003

    Wilson line approach to gravity in the high energy limit

    Full text link
    We examine the high energy (Regge) limit of gravitational scattering using a Wilson line approach previously used in the context of non-Abelian gauge theories. Our aim is to clarify the nature of the Reggeization of the graviton and the interplay between this Reggeization and the so-called eikonal phase which determines the spectrum of gravitational bound states. Furthermore, we discuss finite corrections to this picture. Our results are of relevance to various supergravity theories, and also help to clarify the relationship between gauge and gravity theories.Comment: 33 pages, 5 figure

    Two-dimensional Yang-Mills Theories Are String Theories

    Full text link
    We show that two-dimensional SO(N) and Sp(N) Yang-Mills theories without fermions can be interpreted as closed string theories. The terms in the 1/N expansion of the partition function on an orientable or nonorientable manifold M can be associated with maps from a string worldsheet onto M. These maps are unbranched and branched covers of M with an arbitrary number of infinitesimal worldsheet cross-caps mapped to points in M. These string theories differ from SU(N) Yang-Mills string theory in that they involve odd powers of 1/N and require both orientable and nonorientable worldsheets.Comment: (two references added; one old, one recent) 14pages, Latex, BRX-TH-346, JHU-TIPAC-93001

    Model for the unidirectional motion of a dynein molecule

    Full text link
    Cytoplasmic dyneins transport cellular organelles by moving on a microtubule filament. It has been found recently that depending on the applied force and the concentration of the adenosine triphosphate (ATP) molecules, dynein's step size varies. Based on these studies, we propose a simple model for dynein's unidirectional motion taking into account the variations in its step size. We study how the average velocity and the relative dispersion in the displacement vary with the applied load. The model is amenable to further extensions by inclusion of details associated with the structure and the processivity of the molecule.Comment: 10 pages, 5 figure

    A Reply to Verbeeck and Kearsley: Addressing the Challenges of Including lianas in Global Vegetation Models

    Get PDF
    Verbeeck and Kearsley (1) rightfully point out that global vegetation models would greatly benefit from implicitly including the effects of lianas. Recent experimental evidence that lianas substantially reduce the capacity of tropical forests to uptake and store carbon is compelling (2, 3). Furthermore, lianas are increasing relative to trees rapidly in many neotropical forests (4), which will further change the way that forests uptake, cycle, and store carbon

    Trade-offs Between Water Transport Capacity and Drought Resistance in Neotropical Canopy Liana and Tree Species

    Get PDF
    In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests

    Contribution of Lianas to Plant Area Index and Canopy Structure in A Panamanian Forest

    Get PDF
    Lianas are an important component of tropical forests, where they reduce tree growth, fecundity, and survival. Competition for light from lianas may be intense; however, the amount of light that lianas intercept is poorly understood. We used a large-scale liana-removal experiment to quantify light interception by lianas in a Panamanian secondary forest. We measured the change in plant area index (PAI) and forest structure before and after cutting lianas (for 4 yr) in eight 80 m × 80 m plots and eight control plots (16 plots total). We used ground-based LiDAR to measure the 3-dimensional canopy structure before cutting lianas, and then annually for 2 yr afterwards. Six weeks after cutting lianas, mean plot PAI was 20% higher in control vs. liana removal plots. One yr after cutting lianas, mean plot PAI was ~17% higher in control plots. The differences between treatments diminished significantly 2 yr after liana cutting and, after 4 yr, trees had fully compensated for liana removal. Ground-based LiDAR revealed that lianas attenuated light in the upper- and middle-forest canopy layers, and not only in the upper canopy as was previously suspected. Thus, lianas compete with trees by intercepting light in the upper- and mid-canopy of this forest

    Meson-like Baryons and the Spin-Orbit Puzzle

    Get PDF
    I describe a special class of meson-like \Lambda_Q excited states and present evidence supporting the similarity of their spin-independent spectra to those of mesons. I then examine spin-dependent forces in these baryons, showing that predicted effects of spin-orbit forces are small for them for the same reason they are small for the analogous mesons: a fortuitous cancellation between large spin-orbit forces due to one-gluon-exchange and equally large inverted spin-orbit forces due to Thomas precession in the confining potential. In addition to eliminating the baryon spin-orbit puzzle in these states, this solution provides a new perspective on spin-orbit forces in all baryons.Comment: 24 pages, 4 figure
    • 

    corecore