652 research outputs found
Towards a variational principle for motivated vehicle motion
We deal with the problem of deriving the microscopic equations governing the
individual car motion based on the assumptions about the strategy of driver
behavior. We suppose the driver behavior to be a result of a certain compromise
between the will to move at a speed that is comfortable for him under the
surrounding external conditions, comprising the physical state of the road, the
weather conditions, etc., and the necessity to keep a safe headway distance
between the cars in front of him. Such a strategy implies that a driver can
compare the possible ways of his further motion and so choose the best one. To
describe the driver preferences we introduce the priority functional whose
extremals specify the driver choice. For simplicity we consider a single-lane
road. In this case solving the corresponding equations for the extremals we
find the relationship between the current acceleration, velocity and position
of the car. As a special case we get a certain generalization of the optimal
velocity model similar to the "intelligent driver model" proposed by Treiber
and Helbing.Comment: 6 pages, RevTeX
The effect of temperature on the life cycle of Drosophila nebulosa
It is the purpose of this research to study the effect of temperature on the life cycle of D. nebulosa. D. nebulosa is considered a stenothermal species from a warm environment and has been reported in Texas and Florida, the West Indies, Mexico, Central America, and as far south as Brazil. According to the hypothesis of Hunter (1964), the capacity of this species for adaptation to different temperatures would not be expected to be as great as that of a eurythermal species. Stenothermal species are relatively limited by the environmental temperature, and therefore, one would expect a marked decrease in the length of the life cycle with increasing temperatures. On the other hand, eurythermal species are relatively independent of the environmental temperature, soa relatively less decrease in the length of the life cycle with increasing temperature would be expected
Complex Dynamics of Bus, Tram and Elevator Delays in Transportation System
It is necessary and important to operate buses and trams on time. The bus
schedule is closely related to the dynamic motion of buses. In this part, we
introduce the nonlinear maps for describing the dynamics of shuttle buses in
the transportation system. The complex motion of the buses is explained by the
nonlinear-map models. The transportation system of shuttle buses without
passing is similar to that of the trams. The transport of elevators is also
similar to that of shuttle buses with freely passing. The complex dynamics of a
single bus is described in terms of the piecewise map, the delayed map, the
extended circle map and the combined map. The dynamics of a few buses is
described by the model of freely passing buses, the model of no passing buses,
and the model of increase or decrease of buses. The nonlinear-map models are
useful to make an accurate estimate of the arrival time in the bus
transportation
Anisotropic effect on two-dimensional cellular automaton traffic flow with periodic and open boundaries
By the use of computer simulations we investigate, in the cellular automaton
of two-dimensional traffic flow, the anisotropic effect of the probabilities of
the change of the move directions of cars, from up to right () and from
right to up (), on the dynamical jamming transition and velocities
under the periodic boundary conditions in one hand and the phase diagram under
the open boundary conditions in the other hand. However, in the former case,
the first order jamming transition disappears when the cars alter their
directions of move ( and/or ). In the open boundary
conditions, it is found that the first order line transition between jamming
and moving phases is curved. Hence, by increasing the anisotropy, the moving
phase region expand as well as the contraction of the jamming phase one.
Moreover, in the isotropic case, and when each car changes its direction of
move every time steps (), the transition from the jamming
phase (or moving phase) to the maximal current one is of first order.
Furthermore, the density profile decays, in the maximal current phase, with an
exponent .}Comment: 13 pages, 22 figure
Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic
We study the impact of global traffic light control strategies in a recently
proposed cellular automaton model for vehicular traffic in city networks. The
model combines basic ideas of the Biham-Middleton-Levine model for city traffic
and the Nagel-Schreckenberg model for highway traffic. The city network has a
simple square lattice geometry. All streets and intersections are treated
equally, i.e., there are no dominant streets. Starting from a simple
synchronized strategy we show that the capacity of the network strongly depends
on the cycle times of the traffic lights. Moreover we point out that the
optimal time periods are determined by the geometric characteristics of the
network, i.e., the distance between the intersections. In the case of
synchronized traffic lights the derivation of the optimal cycle times in the
network can be reduced to a simpler problem, the flow optimization of a single
street with one traffic light operating as a bottleneck. In order to obtain an
enhanced throughput in the model improved global strategies are tested, e.g.,
green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure
Dynamical Phase Transition in One Dimensional Traffic Flow Model with Blockage
Effects of a bottleneck in a linear trafficway is investigated using a simple
cellular automaton model. Introducing a blockage site which transmit cars at
some transmission probability into the rule-184 cellular automaton, we observe
three different phases with increasing car concentration: Besides the free
phase and the jam phase, which exist already in the pure rule-184 model, the
mixed phase of these two appears at intermediate concentration with
well-defined phase boundaries. This mixed phase, where cars pile up behind the
blockage to form a jam region, is characterized by a constant flow. In the
thermodynamic limit, we obtain the exact expressions for several characteristic
quantities in terms of the car density and the transmission rate. These
quantities depend strongly on the system size at the phase boundaries; We
analyse these finite size effects based on the finite-size scaling.Comment: 14 pages, LaTeX 13 postscript figures available upon
request,OUCMT-94-
Solvable Optimal Velocity Models and Asymptotic Trajectory
In the Optimal Velocity Model proposed as a new version of Car Following
Model, it has been found that a congested flow is generated spontaneously from
a homogeneous flow for a certain range of the traffic density. A
well-established congested flow obtained in a numerical simulation shows a
remarkable repetitive property such that the velocity of a vehicle evolves
exactly in the same way as that of its preceding one except a time delay .
This leads to a global pattern formation in time development of vehicles'
motion, and gives rise to a closed trajectory on -
(headway-velocity) plane connecting congested and free flow points. To obtain
the closed trajectory analytically, we propose a new approach to the pattern
formation, which makes it possible to reduce the coupled car following
equations to a single difference-differential equation (Rondo equation). To
demonstrate our approach, we employ a class of linear models which are exactly
solvable. We also introduce the concept of ``asymptotic trajectory'' to
determine and (the backward velocity of the pattern), the global
parameters associated with vehicles' collective motion in a congested flow, in
terms of parameters such as the sensitivity , which appeared in the original
coupled equations.Comment: 25 pages, 15 eps figures, LaTe
Experiences with a simplified microsimulation for the Dallas/Fort Worth area
We describe a simple framework for micro simulation of city traffic. A medium
sized excerpt of Dallas was used to examine different levels of simulation
fidelity of a cellular automaton method for the traffic flow simulation and a
simple intersection model. We point out problems arising with the granular
structure of the underlying rules of motion.Comment: accepted by Int.J.Mod.Phys.C, 20 pages, 14 figure
Determination of Interaction Potentials in Freeway Traffic from Steady-State Statistics
Many-particle simulations of vehicle interactions have been quite successful
in the qualitative reproduction of observed traffic patterns. However, the
assumed interactions could not be measured, as human interactions are hard to
quantify compared to interactions in physical and chemical systems. We show
that progress can be made by generalizing a method from equilibrium statistical
physics we learned from random matrix theory. It allows one to determine the
interaction potential via distributions of the netto distances s of vehicles.
Assuming power-law interactions, we find that driver behavior can be
approximated by a forwardly directed 1/s potential in congested traffic, while
interactions in free traffic are characterized by an exponent of approximately
4. This is relevant for traffic simulations and the assessment of telematic
systems.Comment: For related work see http://www.helbing.or
A Cellular Automaton Model for Bi-Directionnal Traffic
We investigate a cellular automaton (CA) model of traffic on a bi-directional
two-lane road. Our model is an extension of the one-lane CA model of {Nagel and
Schreckenberg 1992}, modified to account for interactions mediated by passing,
and for a distribution of vehicle speeds. We chose values for the various
parameters to approximate the behavior of real traffic. The density-flow
diagram for the bi-directional model is compared to that of a one-lane model,
showing the interaction of the two lanes. Results were also compared to
experimental data, showing close agreement. This model helps bridge the gap
between simplified cellular automata models and the complexity of real-world
traffic.Comment: 4 pages 6 figures. Accepted Phys Rev
- …